RESTRICTED COMPOSITIONS
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As a continuation of [6] and [7], this paper deals with a restricted set
of compositions of an integer (to be defined below) and presents extensions of
some results of Gould [2], [3], [4], by interpreting the compositions through
the corresponding lattice paths,

By the definition in [7], a (k + 1)-composition (ty, ty, <, tg4q) of an

integer n (i.e.,

k+

§ t. = n and t > 1
i i
1=1

for every i) dominates another (k + 1)-composition (tj,t},*«*,t}44) of n if

and only if

Using the 1:1 correspondence in [6], we associate with each (k + 1)-composi-
tion of n a minimal lattice path (onward and upwardpath through lattice points)
from (0,0) to (n - k - 1,k) such that the directed distance measured along the
positive direction of x-axis, of the point (n -k -1,k -j), j=1,2,--°, k
from the path is

Without any ambiguity, denote this path by
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K
T T . LLL) DA -
i=1

Thus, it is evident that to the set C(n;ay, ay,--¢,2a) of (k+ 1)-compositions
of n, dominated by the (k + 1-composition (ay,a,,++-,a+) of n corres-
ponds the set L(A;, Ay,+-+,Ax) of lattice paths which do not cross to the left
or above the path

k

[Ai,Az,"',Ak] :' ay - 1, a4 -+ ay - 2,"', Z ai - k
i=1

Let the number in the set C (equivalently in L) be represented by N(n;aq, a,,
cee,ar) for k 21, andby N(n) for k = 0. Trivially,

1) ' N@m) =1 ,

@) Nm:a,1,1,-0:,1) = <a e 1) ,
k-1

and

(3) Nmsay,ag,°°+,ar) = 0,

if any 2y is either zero or negative,

Now consider the path

[ALAE:'“’AI'{]

such that A} < Ai for all i, Every path in L passesthroughone of the points
(n—k—A;ﬂ—Z, k-1, i=0,1,2,°,k, (AI,{’H. = AI’{) before moving to
m-k- Ai+1 -1, k-1i) and then reaches (n -~k - 1,k) not crossing [Ai, A,

-+« , A ]. Therefore,
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(4)  Nmagpag-++,ar) = N@miay - al, a9, ,a5)N(n)
+ N(nsay +ay - aj - aj,ag, -+, ar)Nn;sal)

+ N(njay +a, +ag - aj - a) - aj, a,---,apNnsal, aj)
k k

+ooe N3 a; - 3 al|Nmsal,a, .- ,a.i{_i)
i=1 i=1

+ N(n)N(n;aj, ag,« « - 5 aj)
We note that whenever A} = A,
N(n;a1+... +ai-ai-.n- _a:’[,ai_,_i,o..,ak) = 0 .

It may be pointed out that relation (4) in some sense is a generalization of

Vandermonde's convolution

a further discussion of which is given later,
By setting ay = Ai{+1 and a, = a; =-+°+ = ap = 1 in (4) and using

(2), we get the recursive formula

(5) N(n;a}, aé’ Tty ai{) =

Ai{'*'k k-1 A{{—Ai—l-k—i ,
k - Z k-i+1 N(n;a!p 3%,"' :ai—l)

i=1

which is the same as (9) in [1] and (2) in [8]. The solution of (5) is stated in

the following theorem.
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Theorem 1:

(6) N(n;ah Agyc ey ak)

(Ak+k> <Ak—Ak_1+1)<Ak—Ak_2+2> (Ak—A1+k-1>
k 2 3 k
(Ak_2 +k - 2) . (Ak_2 - Ak_z) (Ak_z-Ai +k-3 H
k-2 1 k-2
+ - - -
(Ak_3 k 3) . ) (Ak_3 Aj+k-4
k-3 k-3

<A1 + 1) (A1 - Ai)
1 0 0 1

1 0 0 e 1
Another way of expressing the number in L leads to

A Ay Ak
(7) N(n;ai, gyt ’ak) = Z Z oo e Z 1

X1=0 X=Xy Xk=Xk~1

a-1 Ay Ak
= Z Z o0 Z 1
X1=0 X2=X1 Xk=xk_ 1
A1 AZ Ak
XY e X L0<a< A+,
XTa X=Xy X *k-1

Substituting X, -a= x; for i =1,2,*°°,k, the second term onthe right hand

side becomes

Ai—a Az—a Ak—ﬂ
(8) 'Z: 'E’-.- '2, 1 = N(n;ai_a’az’uo.’ak) .
X1=0 X9=Xy szxk__ 1

On the other hand, the first term can be written as
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Ak a-1q A2 A3 Ak
9 X 2 ... by

= = > 1= X Yy .. X

227

1
¥k X170 X9=0 X5=Xy XX
a-1 Xy-1  Ag Ax
X X X o X,
X1 X=0 Xg=Xy Xk=Xk-1
whereas the last term in (9) can again be expressed as
a-1 x3-1 Ag Ay Ay a-1 X-1 Xo-1 Ay Agk
HDIED DD VD DD S EID DD DEED DI DI D)
X171 X970 Xg70 XyTXg X=Xk -1 X=2 Xp=1 XyT0 X=X Xp=Xk-1

When we proceed in the above manner, the final expression for (9) is

k .
1+1 a M oo
(10) lgi (_1) <1> N(n’Ai+1 + 1: ai+2: ’ ak ) )

by noting that

a-1 X1—1

sy LY

X=i-1 X9=i-2

1 a-i Xj—q

X4
- Y - 21:<9')
X=0 X,=0 X§=0 !

and

Aty Ajn A
X0 Xg S X k-1

Thus it follows from (7), (8) and (10) that
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k .
(11) Z (—1)1 (?)N(n;Al'i'l + 15 ai+2" °ty a-k) = N(n;ai - a, az,' ] ak)
1=0

An alternative way of simplifying the first term on the right of (9) is

a-1 A, Ax a-1 A, Xk-q-1
2 X - Xx1-X Y ... 1,
X4=0 X=Xy Xk=0 X=0 X9=Xy XKk=0

where the sums in the last term for which Xy 1 is negative are zero.

Repetition of this process yields

k .
(12) Z (—1)1+1 (Ak+1—.i + 1) Nm;aq,ag,++,ak-j) = NMm;ag, ag,+ -+ ,a)
i=1 i

for ¢ = a;. Relation (12) has been obtained earlier in [7], which is equiva-
lent to (3) in [1].

When ¢ = ay, the solution of either (11) or (12) is stated as Theorem 2,
for which a direct elementary proof is provided below.

Theorem 2:

(13) Nnsay, a9, ,ak)

) () ()

Proof: Obviously
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(¥)

X,
k-1

Using this in (7), we see that

()

X4

Ai Az Ak_1 (Ak +1 _ (Xk_1>(
N@say, g, ,aK) = 2. 2, > 1 1
X=0 X=Xy X -17XK -2
Aty (Xk—i
0 0
0
0
A1 Az Ak-—1 (Ak + 1) (Xk"i
RS> 1)\
X1=0 X9=Xq Xk-I:Xk“'Z
1 1
0 0
0 0

229
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The proof is complete when the summation is continued to the end,

Theorems 1 and 2 give rise to an interesting combinational identity on
determinants, the direct proof of which is not obvious,

We check either from the theorems or directly that
(14) N@saj,ag,°**,ak) + N(nja; +ag,as,*+°,ak) = Nnsay + 1,85, °,ak) ,

(15) N(n;l,a9,0 ¢ ,a;) = N(nsay, as,°°°,ak) ,

and

k k
(16) N(Zai+j;a1,a2,---,ak) = N(Z a; + l;ai,az,-w,ak) j=1,2,040

i=1 i=t

A few important special cases are considered below, -

Corollary 1,

. B a a + kb
(17) N(n>a:.tl]'{;.:T’b) T a + kb ( k )

This is directly verifiable from either one of the theorems, (Also see Theo-
rem 1 in [6]).
In the next, we evaluate

N (a’b; C, d) = N(n;a, b’ co,b,c, d, A d)
P.q ————— ——
p-1 q-1

which has been obtained by a different method as Theorem 3 in [6]
Corollary 2,

q : .
) _ i a a+((+q-ib
(18) N, (@ bse,d) = ;j) e e ) < p+q-i )

X

(g -1+ Db -c-(q-1d f(qg-i+1)b-c-qd~+i
g-1i+1b-c¢c-qd+1i i °
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Proof: For c+qld-1) 2 gb, the result is immediate, by taking Ai =
@a-1)+@G-1b-1), i=1,2,**,p+qg in (4) and applying Corollary 1.
When c+q(d-1) < gb, let s(p £ s£ p+q) be the largest integer so that
c+s{d-1) 2 sh. Np’q(a,b;c,d) and N{n;a,b,*°°,b), expressed with the

help of (4), where p+q-1
(@a-1)+@G-10b-1) i=1,2,00°,s,
Al = @-D+@E-Do-1+@C-1)+G-p-1d-1)i=s+1,

S+2’oo-’p+q’

lead to (18), after some simplification.

For completeness, we present two more special cases which are known
and can easily be derived.

Corollary 3:

(19) N_ (a,bsc 1)=(a+c"z+(P-1)<b-1)+p+q>
p,q ]

pta
s a la+ (ptg-i)b \f c+a-(-i+1Db-1
. '_'7__—'—_—'_—-7-' i . °
15t a+t(p+q 1b\p+q i i

Corollary 4:

a+2p+q—1)_(a+2p+q—1)

. 1 =
@0 N (22,1 ( D o

In his paper [2], Gould has defined

_ B B +7k
A7) ”m( k >

and has shown that Ak(ﬁ,‘y) satisfies the relation

k
(1) 2 ABYIA(B,Y) = ALEB +8,7) .
i
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Suppose that 8, y and 8 are non-negative integers, Then (21) immediately
follows from (4) and (17) by putting a; = B +8, a; = ag = *++ = 2, =7, aj
=B, and aj = af = =al =y in (4. Relation (11) in [2] can similarly
be verified. Also, the convolution (5.5) in [3]for t = 0 canbe comparedwith
(11) and their equivalence is easily established.

In what follows, the results on restricted compositions are analogous to
those on unrestricted compositions in Gould's paper [4] (Theorems 1 and 5 or

equivalently Theorem 6), Fix aj,a3,°°°,8; and let

k
m= ) a .
=

From (14), (15) and (16) we infer that

&
(22) N(m +ay+1; ag, a5, *,ag) = o, N(m+i; a5 - 1+1,a5,°°",a)
i=1
a1 m + a4
= Z‘i [m‘;] N{m+i;a2—1+i,ag,-=-,ak}
1:

where [z] is the greatest integer less than or equal to z and N{m +ijay -1
+1i, ag,***, ak} is the number of compositions in the set S(m + ijay - 1 + i, ag,

«,a) which is defined as follows: For i negative or equal to zero,

Stm + i; a5 - 1 + i,a3,°°°,8K) is empty;

S(m + 1; ap,a3,+++,ak) = Clm + 1; apag, -+, aK) ;

For i 2> 2, S(m +1ijay-1+1i,a3,**+,ak) isthe subset of C(m +i;a; -1
+1i,ag,+++,ak) with thepropertythat if (xy,xy,+*+,xK) € S(m + u;ay - 1 + u, ag,
cesyak), u=1,2,+¢0,i~1, then for r a positive integer (rxy,rxy,--- ,rxk)

& S(m + i;ay - 1 +1i,a3,°+,a). Expression (22) corresponds to Theorem 1

in [4] .
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(e 2]

[0 o}
. . +j i
ZN(m"’J"“l; ],az,"’,ak)xm‘]:z Xm+J
j=1 j=1

m .
X i; [ﬁ:i] Nf{m +i; ay - 1+1, ag, -+, ak}

-

1

o0 o0 . .
> N{m +i; a2—1+i,a3,---,ak}z [m_ﬂ]xmﬂ

=1 j=i L™ +i
i { Xm+i
= Y N{m+i;a,-1+1i,a5 00,8 X
i=1 k 1-x-x"")
by (3) in [4]. Therefore,
(e o)
m-+i
(23) ZN{m+i;32—1+i,a3,"°,ak}—LT—
i=1 (1-x""
oo
= 20 N@m +i+ L, a2 x™ H(1-x)
i=1
o »
= Y N(m+i; ag- 1+i, ag,ees, ap)x
i=1

by (14), (15) and (16). But (23) can be written as

(e 2]
i
(24) Z N{i;az—m-1+i,a3,-n,ak} -
i=m-+i 1-x'

[¢ 2}

. . i

= Z N(i;ag-m-1+i,a3,**+,ag)x .
i=m+1

In order to extend the summationto i = 1,2,***,m in (24), define

0 for i = 1,2,°¢+,m

* . : -
N™(i;8y -1 - 141, 85, + =+, 8c) {N(i;a -m-1+i,a3,***,a) for i=m+1, m+2- -
2 3 k

Thus, following the procedure in [4],

(25) N{n;n+a2—m—1,a3,"',ak} = E N*(n;n+ay-m-1, a3,"-,ak)u<-i—n) ,
ijn
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which is similar to that of Theorem 5 in [4]
We finally remark that such results can also be obtained for the number

of lattice paths in the set Li(Ai, Ay, oee ’Ak) defined as follows:

LO(Ai,Az,---,Ak) = LA Agy ot Ay ); Li(Ai,Az,---,Ak) is the subset of
L(A; +1, Ay + i,---,Ak+ i) such that if [xi,xz,---,Xk]ELu(Ai,AZ,-“,Ak) ,
u=20,1,+.-,i-1, then [rxi,rx2,---,rxkjéLi(Ai,Az,---,Ak) .
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