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1. INTRODUCTION

In this paper we discuss the problem of representing uniquely each mem-
ber of an arbitrary infinite interval of integers. The integers of the interval,
and no others, are to be expressed as sums of terms of a sequence (bn) of
integers. We also discuss the problem of representing uniquely each positive
integer, and no other integer, as the linear combination of terms of a sequence
(bn) of integers, where the coefficients in the linear combination are prescribed
and have the value +1 or -1. In each problem, roughly speaking, we choose
an integer k = 1 and require that any two terms of (bn) whose suffixes dif-
fer by less than k shall not both be used in the representation of any given
integer. The precise definitions and results are in the next section, where we
also show the way in which earlier work [1] by one of us (D. E.D.) is related
to our definition of an (h,k) base.

In a later paper we will discuss an analogous problem of representing
uniquely each real number in the interval (0,c], where c¢ is any positive
real number. Finally, we would like to thank Professor R. Rado for hishelp-

ful suggestions in the preparation of this paper,

2, STATEMENT OF RESULTS

Throughout this paper, h,k and m are integers such that
h+1=k=h=0, k=1 and m= 1.

Also, unless we state otherwise for a particular sequence, the subscript of the

first term of a finite or infinite sequence is the number 1, e.g.,

(an) = kaja Agy° ')

We denote by (vn) the (h,k)th Fibonacci sequence defined by
329
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v, = n for 1 =n =k,
(2.1)
n

:Vn—1+vn—k+(k_h) for n >k ,

An equivalent definition of this sequence was given (for h = 1) in [1] (p. 144).
We denote by (un) the (k,]k)th Fibonacci sequence and by (fn) the (Z.Z)th
Fibonacci sequence, which is clearly the original Fibonacei sequence (1,2, 3,
5,8,13,21,: ). Further, we write [a,b] for the interval of integers x, a
=x =b, with the obvious interpretation when a = -« or b = +w,

Suppose (an), (kn} is a pair of sequences of positive integers with the
following property P.

P. Each integer N € [1,] has a unique representation

N =a, +a, +... +a,
14 19 1oy

+1—iv zk for 1 =v <a,
It is shown in [1] (Theorem D) that if (an) is increasing and the pair
)s (kn) have the property P then ky =k, = ky+1, ky = k for v= 2,

where o = N) and iV

(a
anrél (an) is the (ky, kz)th Fibonacci sequence. This result leads us to make
the following definition,

Definition 1. A finite or infinite sequence (bn) of integers is an (h,k)
base for an interval [a,b] if each integer N & {0} U [a,b] has aunique

representation
(2.2) N="5»b +hb, +--- +h ,
where

a = oN), i,z i;+h if ¢ =1, and iv+1’>‘iv+k for 1=v=<a ,

and further, if N is an integer which can be expressed in the form (2.2) then
Ne{o}uU[ab].

Notice that the representation of 0 in the form (2.2) is the empty sum,
Theorem 1 is a statement in this notation of another result proved for
h = 1 in the earlier paper ([1], TheoremC). This result can easily be shown
to be true for h = 0 also,
Theorem 1. The first n terms (vy, V9, ---, Vn) of the (h,k)th Fib-
onacci sequence (vn) form an (h,k) base for [1’Vn+1 - 1], and (Vn) forms

an (h,k) base for [1, «].
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Our first new results, Theorems 2-6, are concerned with the existence
of (h,k) bases for the infinite interval [m,0] with m # 1, and for theinfin-
ite intervals [-m, ] and [-«, ], We conjecture that there is no (h,k) base
for [m,~]when m =3, but have onlybeenable to prove the following theorem,

Theorem 2, If m =1 and (bn) is an increasing sequence of integers,
b, #(2,3,4,°0+,2%%,.0.), then (b)) ismotan (h,k) basefor [m,»]. How-
ever, (bn) = (2,3,4,°°- ,Zn_i,---) is an (h,k) base for [m,w] if and only
if h=k =1, and m = 2, By the statement that (bn) is an increasing se-
quence, we mean that by = by = ---

It is easier to dealwith the intervals [-m,«] and [ -w,w0], providedthat
h = k, However, we have been unable to settle the question of the existence of
(h,k) bases for these intervals when h # k,

Theorem 3. If -m is a negative integer then there exists a (k,k) base
for [-m,o].

For the set of all integers, [-w,»], there are infinitely many (k,k)
bases, and in fact we can choose the sign which each term of a (k,k) base is
to have, subject to the condition that the signs change infinitely often,

Theorem 4, Let (sn) be a sequence such that

s, € {-1,1} for n =1, and
(2.3)
S_° S = -1 for infinitely many n = 1.

n n-i
Then there is a (k,k) base (bn) for [ -w] with Snbn> 0 for n= 1,
For k = 2, we give an explicit example of a (k,k) base for [-m,e] in

terms of the Fibonacci sequence (fn). We first represent m in the form

(2.4) m = f +f +eco +f
14 1y 1o
where
3 > 1 ~ < s
1V+1~1V+2 for 1=sv=<=a,

The existence and uniqueness of this representation is proved by Theorem 1.
Next we let (sn) be the sequence defined in terms of the suffixes iv of (2.4)

as follows
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= -1 for 1=v = «

(2.5)

n
Il

1 otherwise.

Then an explicit formula for a (2,2) base for [-m,»] is given in.the follow-
ing theorems.
Theorem 5. Let -m be a negative integer, let the sequence (sn) be de-

fined as in (2.5), and let

i
-

Snfn if sn' 81

] = = - =

(2.6) by sy and b](1 s f i s . s - 1 for n= 1.
n n-1 n  n-i

Then (bn) is a (2,2) base for [ My ] e

Similarly, we have an explicit formula for a (2,2) base for [ ], in
terms of the Fibonacci sequence (fn). We prescribe the sign of each term of
the base, subject to the condition that the signs change infinitely often.

Theorem 6. If the sequence (sn) satisfies (2.3) and the sequence (bn)
is determined in terms of (Sn) by the relations (2.6), then (bn) is a (2,2)
base for [-c0] with snbnz 0 for n= 1.

So far we havebeen concerned with unique representations of integers as
sums of terms of a base. It is interesting to consider the problem of uniquely
representing integers as linear combinations of terms of a sequence (bn) of
integers, where the coefficients in the linear combination are prescribed and
have the value +1 or -1. We first make the following definition.

Definition 2. Let a sequence S = (sn), where S, S {—1,1} for n= 1,
be given. A sequence {bn) of integers is an (h + 1,k;S) base for [0,o] if

each integer N € [0,0] has a unique representation

2.7 N =sbh +s b, + sib,
a1y a-1"1y %%
where
a = o), i, iy +h+1ifa >1,
and s >

= -+ =y <
i, i, k for 2 o
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and further, if N is an integer which can be expressed in the form (2.7) then
NE [0,0].

Theorem 1 shows that the (h,k)th Fibonacci sequence (Vn) is an (h,k)
base for [1,0]. It follows that (v,) is an (h,k) base for the set of all non-
negative integers, [0,o0], and we have been able to determine the conditions
under which (vn) is an (h + 1,k;S) base for this same set of integers.

Theorem 7. The (h,k)th Fibonacci sequence (Vn) is an (h + 1,k;S) base
for [0,0] if and only if S, = (-1) for n= 1.

n+1
In ourlast theorem we give an explicit formula for the terms of (vn), the
(h,k)th Fibonacci sequence. It is well known that the terms of the Fibonacci
sequence (fn) are sums of the elements in the diagonals of Pascal's triangle,
and Theorem 8 extends this result.

Theorem 8.

n . i
i 1

(2.8) v.o= 2 <n—h+(k-1)(2—i)) for n= 1.
“Eoh

Here, as usual, (g) denotes the binomial coefficient a!/(a - b)! (b!).

N

3. PROOF OF THEOREM 2

We assume that the sequence (bn) is increasing and is an.(h,k) base
for [m,~], and in each of the first three cases we deduce a contradiction of
definition1 of an (h,k) base by finding a number which has two representations
in the form (2.2).

Lemma 1. bn =n+m-1 for 1=n=m+h

Proof. As the sequence (bn) is increasing, it is strictly increasing, so

that by = m and
(3.1) bn2m+n—1forn21.

The smallest number of the form (2.2) with ¢ = 1 is by + b4y, and, by (3.1),
by + by+ph = 2m + h. Hence bn =m+n-1 forall n= 1 suchthat m+n-1
< 2m +h; i.e., n = m+h, This proves Lemma 1.

We consider now the various cases.
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Case [1]. m= 3. Then by Lemma 1,

1l

by + bptg = m + (m + h + 3 - 1) (m + 1)

+{(m+h+2-1) = by + bpty

Case[2]. m=2, k> 1. ByLemma 1, b =n+1for 1=n=h+2,
and so by + by+y = 4+h, by +bytyh = 5+h, and by + by = 6 +h. Clearly,
6 + h is the largest number which can be represented in the form (2.2) with
ia =2+h and o = 2. However, the smallest number which can be repre-

sented with o = 3 is
b1+b1+h+b1+h+k24+h+b3+h>4:+h+6+h2 10 + h .

Therefore bgyp, = 7 + h. But by +by+p = 2 + (7+h) = 9+h, sothat 8+h

has no representation with iy = 3 +h. Hence by+y = 8 + h. But then wehave
by + ogep = 2 + 8+ h) = 3+ {7+ h) = by + bgrp -

Case[3]. m =2, k=1, h=0. Then by Lemma 1, by = 2 and b,
= 3. Therefore the representations of 4, 5, 6 and 7 are by + by, by + by, by
+ by and by + by + by respectively. The number 8 cannot be representedin the
form (2.2) with iy, = 2. Hence bg = 8. Similarly the number 9 cannot be rep—
resented with i, = 3. Hence by = 9. But then by +bhy = 2+9 = 3+8 = by
+ bs.

We have now only to deal with the cases when m =2, k=1, h = 1,
It follows, therefore, from the contradictions obtained in the first 3 cases that
if (by) is an (h,k) base for [mw], then h =k =1 and m = 2.

Case [4]. h=k=1, m = Dby =2, by =3 and bn=2n_1 for n = 3.
In this case (by) is a (1,1) base for [ 2,.].

Forlet N =2 be an integer. If N is even, then its representation in
the form (2.2) is the binary representation, which is unique. If N is odd, then
N - 3 is even, and so the representation of N is the binary representation of

N - 3 together with by; hence this representation is also unique.
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Notice that, for p = 3, each of the numbers 2,3, -+, 2Pt _ 2, aP-1
-1
-1, 2°77+ 1, and no others, can be represented in the form (2.2) using (b4,
by, + v+, bp—i)' This fact is used in the proof of the next case.

Case [5] h=k=1, m=2, (b # (2,3,4,8,---,2"7,...), Again
we assume that (b,) is increasing and is an (h,k) base for [ m,o], so that,
by Lemma 1, by = 2 and by = 3. Let p= 3 be an integer. Suppose that
bp # 2°7, and, if p =3, also suppose that by = 4, by = 81 by =27
Then, by the remark at the end of the last case, by = 2P+ 1. But then 2P7*
has no representation in the form (2.2), which contradicts definition 1 of an

th,k) base. This completes the proof of Theorem 2.

4. PROOFS OF THEOREMS 3, 4, 5 and 6

Throughout this section, namely Lemmas 2-8 and the proofs of Theo-
rems 3-6, the sequences {tn), (ap), (dy) and {(ey) are asdefinedimmediately
below. Welet (t;;) be asequence such that tn€{—l, 1} for n = 1. The three
sequences (a,), (d,) and (e,) are simultaneously defined by induction in

terms of the sequence (t,). First weput a; = t; and d = e, = 0 for n=0.

If n > 1 and wehave defined theterms dv’ e, for v =n - 2, and the terms

a, for 1 = v =n-1, then we define dn_ e and a  as follows.

17 n-i

i) dn~1 is the largest, and e, 1 is the smallest of the number 0 and

the numbers representable in the form

(4.1) aL1 + aiz +oea. 4 aia/ .
where
i,= n -1 and 1V+1z1v+k for 1=v =«
ii)
- + i = +
4.2) a = %dn-l ®n-k 1if tn 1
le, - d -1 if t =-1

The relation (4.2) is clearly true for n = 1 also.

Lemma 2. (i) Forall n, 0=<d =d and e = e = 0.
—_— n-1 n n

(ii) For n= 1, ta = 0.
nn
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Proof, (i) Follows immediately from the definitions of (d,) and (e,).
(i) For n= 1, if t, = +1, then, by (4.2) and part (i),

a =d - e +1= 1.
n n-1 n-k
The proof when tn = -1 is similar and completes the proof of Lemma 2.
Lemma 3. For n=1, if t = +1, then d_ = d +a and e =
_— n n n-k n n
e , andif t = -1, then e = ¢ +a and d_=4d .
n-1 n n n-k n n n-1
Proof, (i) We assume that t = +1 and show that e = e, Since
tn = +1, by Lemma 2(ii), a, > 0. The number €4 is, by definition, the

smallest of the number 0 and the numbers representable in the form (4.1),

and since a, > 0, no smaller number can be formed by adding a. Hence

e =e_ . Similar reasoning shows that d_= d it t = -1,

n n-1 n n-1 n

(ii) We assume that tn = +1 and show that dn = d x Ty
From the definition of (d,), dn = dn—k + a. We suppose that d = d k
a, sothat d_=4d +a for some r = 0. Hence d + a >
n n n-r-k n-r n-r-k n-r
3 =>

dn—k + a. However by Lemma 2(i), dn—r—k = dn—k’ SO that a, = 2

Since tn = 41 it follows from Lemma 2(ii) that a = 0. Therefore a_r =
0 and so tn—r = +1, Therefore, by (4.2),

(4.3) dn—r—1 "k Tl T A et

. _ = _ . o
However, by Lemma 2(i), dn_1 = d ret and ek € ork’ which con
tradicts (4.3) and so proves that d =d -k + a.. The proof that if tn = -1

then e, = + a, is similar. Th1s completes the proof of Lemma 3.

®n-k
Lemma 4, For all n, the finite sequence (aj,aj,°°°,a,) is a (k,k)
base for [e ,d ].
n’ n
Proof, We use induction upon n, When n = 1, (ajpas°¢°,ay) = 9,
the empty set. Since e, ~ d][1 = 0, the lemma is true in this case,

Let m = 1, and suppose the lemma is true for n = m., Then (a,,a,,

resa ) isa (k,k) base for [em_k, dm-—k]' From (4.2). and Lemma 2(i),
if t = +1 then a_ +e >d , and if t = -1 then a_ +d <
m m m-k m-k m m m-k
e -k Therefore (aj, ay,c°- ’am—k’ am) isu a (k,k) base for

[em—k’ dm-—k] U [em—k * Am? dm—k * am]'
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Also by the induction hypothesis, (aj,a5,°°°, am—1) is abase for [e
By (4.2), if t_ = +1 then d_ +1=a_ +e
m m-1 m

m-1’
d I me andif t o= -1

then ©moy ~ 1= a. + dm—k" Since also, from Lemma 2(i),

[em—i’ dm—1] =2 [em—k’ dm—k}

it follows that (a;,a9,°°°,ay,) isa (k,k) base for [em—k’ dm—k + am] if tm

= +1, or for [em_k +am, dm—i} if tm = -1, Hence, by Lemma 3, (ay,a,,

cec,a_) isa (kk base for [e_,d ].

m m’ m

Lemma 4 now follows by induction,

Proof of Theorem 4, Suppose tn =8, for n = 1, where (sn) is the
sequence defined in (2.3)., Then (tn) has the additional property that tn . tn_1
= -1 for infinitely many n = 1, It is then clear from Lemmas 2(ii) and 3 that

dn —ow and e, T ~© as n—wo, 50 that, by Lemma 4 (an) isa (k,k) base
for [-e]. We have already shown (Lemma 2(ii)) that antn =0 for n=1,
so that Theorem 4 is proved.

Only part (i) of the following lemma is needed in this section. Part (ii) is
used in Section 5. We let Nn(ﬂ) be the number of finite sequences (iy,ig, -,
iy) of positive integers such that

(4.4) 1=i,=m, ipb=§3+4 if ¢ =1, and i =i +k for 2=v=a;

and are only interested in the values £ =h and ¢ = h + 1.

Lemma 5. (i) For n= 1, N (h) = v ,
—_— n n+i
(ii) For n =1, Nn(h +1) = vy + 1.
Proof, (i) By Theorem 1, for n = 1, there is a 1:1correspondence be-
tween sums of the form Vi + Vi tooe + v; with condition (4.4) applied with
2 o
£ = h, and the integers in [0, Vo~ 1]. Hence Nn(h) = Vo
(ii) If each finite sequence (iy,ij,*-+,i,) of positive integers,
with condition (4.4) applied with ¢ = h, is transformed by putting i; = j; and
iv +1 = jv for 2 =v =« , then we obtain all but one of the finite sequences
(g2d2s°°* i) of positive integers, where 1= j,=n+1, j,= j;+h+1 if
@ =1 and jvJr1 = jv +k for 2 =v<a. Thefinite sequence we do not obtain
Nn+1(h +1) = Vo T 1 for
n = 1. Hence Nn(h +1) = Vi +1 for n= 2. Aspart (ii) is clearly true when

Il

is (j;), when j; = n+1, Therefore, by part (i),

1, the proof of Lemma 5 is completed,
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Lemma 6.

U et for n =k
(dn - dn—i) - (en - en_i) =1{1 for 1=n=<k
0 for n<1.

)th

The sequence (un) is the (k,k Fibonacei sequence.

Proof. By Lemma 5(i), Nn(k) = for n = 1. Therefore it follows

from Lemma 4 that d_-e_ =u - 1. Hence for n = 2,
n n n+1

I

@ -d )-fl ~e )= -e)-@  -e )

(u -1 - (un-l)

n-1

n+i

u f = k
noletq for n s

1 for 2=n-<k.

11

The result is easily seen to be true for n = 1 and is trivially true for n < 1.
This proves Lemma 6.
Lemma 7. If k=2, then a; = t; and for n> 1,
(tf it et =1,
nn n  n-1

ittt -t = -1,
n n-1

h Tt
n n-i
The sequence (fn) is the (Z,Z)th Fibonacci sequence (1,2,3,5,8,°*°).

Proof. By definition a; = ty.

Let n= 2 and tn . tn—i = 1. By Lemma 3, if t; = +1 then a, = d][1 -
d and e = e =e , and if t = -1 then a =e -e and d_ =
n-2 n n-1 n-2 n n n  n-2 n
d =d_ .. Also, by Lemma 2(i), 0= d =d and e_= e = 0. Hence
n-1 n~2 n-2 n n n-2

4 :{tn dy - dp,) - (e - en—z)}
- tn{(dn - dn—i) - (en - en-i) * (dn—1 - dn—z) - (e
t (£ + ) if n= 3
_Jn'n- n
B +

€+ 1  if n=2

n-1 en—z)}

I

}, by Lemma 6,

1l

t L .
nn

Now let tn . tn = -1. Then similarly by Lemmas 2(i) and 3,
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d -d it t =+1,
n n

_ n-1
4 T e - ift =-1,
n n-1 n
= ( _ _ (e -
tn{(dn dn—1) (en en—l) }
= tf ., by Lemmaé6.
nn-i

This proves Lemma 7.

Proof of Theorem 6. We take k = 2, We suppose that tn =8, for
n= 1, where (sn) is the sequence defined in (2.3). Then, by Theorem 4,
(an) is a (2,2) base for [-cw,] with ansn> 0 for n= 1. But by Lem-

ma 7, a; = s; and

Snfn if Sy Spy T 1
n T )sf i s -s_ --1fOrnEL

nn-1
Therefore the sequence (an) is the same as the sequence (bn) defined in the
statement of Theorem 6. Hence (bp) is a (2,2) base for [-coe] with a b
> 0 for n= 1. This proves Theorem 6.

Lemma 8. For n= 1, if x is an integer such that -u +1=x=0

+1
then there exists a choice of (t;,ty,°**,t,) for which e, = x
Proof. We use induction upon n. If t;y = +1 then e; = 0, while if ¢
= -1 then ey = -1; since -uy+ 1 = -1, the Lemma is true in the case when
n=1.

Let m = 2 be an integer and suppose that the Lemma is true for 1 =n

< m. Then if -u +1=x=0 there exists a choice of (15t 0 sty _1)s
which we denote by (t}, t}, - <+, thn-1), for which ey - X Hence, if we
choose (tj,tg***stm) tobe (E},th, -, th_4,+1), then by Lemma 3, e, = X

However, suppose that

(4.5) “umﬂ = X = -um + 1
Then
(4.6) Xx+u =0

m

Therefore, by (4.5) and (4.6),
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-u + 1+ u =x+u =0 if m=k,

m+i m+i-k m+i-k
“4.7) and
—um+1+1+15X+150
But, from (2.1),
-u oyt 1+u ok if m=k,
(4.8) -u_ + 1 ={-u + 1+ 1 if 2=m <k.

(-u_ +1) =x+u

m m+1—k$ 0 if m = k, and

(4.9)
(-um+1).<_ x+1= 0 if 2=m=k.

Therefore, by the induction hypothesis and (4.9), there exists a choice of

(t1stp+ =+ > ty_1), which we denote by (t}, t},««-,ty, ;) for which
X + W timk if m =k,
(4.10) ey
- X+ 1 if 2 =m-=<k.
If we choose (ti,ty, " ,t;m) to be (t!, th et tingo -1), then by Lemma 3,
d =d , and so by Lemma 6,
m m-1
€ ot~ Ytk if m=k,
(4.11) m e -1 if 2=m~< k.
m-i

Hence, by (4.10) and (4.11), e, =x
Lemma 8 now follows by induction.

Proof of Theorem 3. If p is an integer such that -u_, + 1 = -m then,

pti
by Lemmas 4 and 8, there exists a choice of (ty,ty,*** ,tp), which we denote

by (t'i, t'z’ cee, ti)), such that (ay,ay,°**, ap) is a (k,k) base for [-m, dp].
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Then, if tn = th for 1=n=p and tn = +1 for n> p, by Lemmas 3 and
4, (ag,a9,°°*,2,) isa (kk) base for [-m,dn] for n= p. By Lemmas 2(ii)
and 3, dn~»oo as n—w ., Hence (an) is a (kk) base for [-m,e].

Proof of Theorem 5. We take k = 2. We suppose that tn = s, for

n =1, where (sn) is the sequence defined in (2.5). By (2.4), i, = it 2

for 1 =v < @, and so, by (2.5) and Lemma 2(ii), for n= ia + 1,

(4.12) e = Bt 3 11 Ty
However, by Lemma 7, a; = s4 and
s f if s s = +1
nn n n-1
(4.13) a, = g ¢ Cif s - s — for n= 2
n n-1 n  n-i

Hence the sequence (an) is the same as the sequence (b,) defined in (2.6).
But by (4.13) and (2.5), aj +1 = Siv+1fiv = ‘fiv for 1 =v = a. Hence, by

(4.12) and (2.4), e, = -m for n= iy + 1. From Lemmas 2(ii) and 3, dn—» co.

as n —«, and so, by Lemma 4, (b,) isa (2,2) base for [-m,ex].

5. PROOF OF THEOREM 7

Let S8 = (sp) be a sequence such that s € {-1,1} for n= 1, let m
be a positive integer, and let (iy, iy °**,iy) be a finite sequence of positive

integers such that

(5.1) ig= iy +h+1 if > 1 and iv+1ziv+kfor 2=v <«a.
Lemma 9. If (iy,iy,-°+,iy) =@, the empty set, then
8:Vig T StVig_y Tt T SV, 0 .
Lemma 10. If s; = +1 then SiViy, * SVi,_, Tt T seviy = 0.
Proof. Let s; =1. If ¢ =1, then 8iVig T 8Vig_y Tt T SgViy = Vi,

= 1. If ¢ = 1 then



342 BASES FOR INFINITE INTERVALS OF INTEGERS [Nov.

co+ ; + o 4 = vy - (v + v + e 4oy
S1Vig, T S2Vig_, Sa Viy Vi, (Vla—1 Vig_a vi,)

IV

Vig = (Vi(l’—1+1 - 1), by Theorem 1,

IV

1.

This, together with Lemma 9, proves Lemma 10.

n+1
)

Proof of Sufficiency. Suppose that s, = (-1 for n= 1, and that

ia = m. Since (vp) is a strictlyincreasing sequence, it follows that if o = 1

then sqvj, +Spvi,_, * + Vi, = Vi = v, Hence, and in view of Lem-

mas 9 and 10,

. = s+ . 4 oeee 4 .=
(5.2) 0 S1Vig, T SaVig_y SaViy =V

m

We show now that any two distinct finite sequences (i, iy, °*°,ip) which
satisfy (5.1) yield distinct values of S1Vig, * S2Vig_y Tt T SyVige Suppose
therefore that two such distinct finite sequences are (ji,jg, jﬁ) and (g1,

g2, **»gy). We suppose without loss of generality that Vjﬁ = v and con—

g—y?
sider three cases.
Case[1]. B = 1. Then

s . oo . = .= =
S1VJB + SZVJB_i + + sﬁvJ1 V]B ng S>1Vgy + szvgy_1 + +S~)/Vg1.
Case[2]. B8 = 2. Then

s1va + Szva_1+ see 8gVj, = ng - Vjﬁ_1

= Vig = Vig-h-1

= vjl3 - Vj‘B_kZ Vjﬁ_i, if k=h+1

= V. - Vs k = Vs if k = h by (2.1),
B g~ v

= Vg')/ = S1ng + szvgy_i +oees + SF}/Vg1 .

Case [3]. B = 2.

Then
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S . -+ . ° o0 e : . -— 0]
qi"]ﬁ SZVJB_i + + SBVi, = VJB VJB-'i

= VJB - leg—k
= Vig = Vig-k - (k - h)
= V]B - 1, by (2.1) )

> Foee
Vg, = StV + Vg, + SV, -

By Lemma 5(ii), the number of distinct finite sequences (ij, iy +<*,i,)
with i, = m which satisfy (5.11) is Vi ¥ 1. Therefore, since any two such
distinct finite sequences yield distinct values of S1Vig, T SaVig,_, t 1ttt SaVip
and in view of (5.2), it follows that (vy,vy,*++,vyy) is an (h+ 1,k;S) base
for [0,v,,] when s, = (_1)n+1 for n= 1. The sufficiency of the condition

follows.

Proof of Necessity. Suppose that (v. is an (h + 1,k;S) base for [0,

n)

o], We show that s, = (_1)n+1 for n = 1. Clearly s; = +1, for otherwise
sqvy = -1, a contradiction, We suppose that S, = (_1)n+1 for 1=n=m
and that St = (—1)m+1, and deduce a contradiction in every case.
Case[1]. m = 1. Then sy = sy = +1. We write M = v, -vy. If
a =1 and i, = h+2 then SiViy, * SaVig_, t Tt 8Viy = Vi, > M, whereas
if « =1 and i, = h+1 then
M = Vh+2 - Vi

= iy F Vg U6 - B) - v, by @.1)

= WVpat T V2 - Vi if h =k,
Vh+1+V1+1-V1: if h+1 =Kk,
.= i . Foeee A+ .
>Vh+1 = Vi slvla+ S2Vig_1 SaViy

On the other hand if ¢ > 1 then iaz h+2, andso

S{Vi, © SaViy_, t T SaVig = Vig t Vi - Wi, T Vi, gttt T Vy)
= Via' + Via_1 - (Via_2+1 - 1),

by Theorem 1,
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Hence M # $1Viy, + S2Vi, Foeee sV for any finite sequence (iy, iy,
-++,1,) satisfying (5.1), which contradicts our assumption that (vy) is an
(h + 1,k;S) base for [0,0].

Case[2]. m = 1. We write

(5.3) N = sV kehrs ¥ SV (meg)kthtz 7T T SmVhte T SVt -

It follows from Lemma 10 that N = 0. If m = 2 then N =

Vithog ~

- < — . . -

Vs ~ Vi Victhts V(m—i)k+h+2’ while if m 2. then
N = Voo piehie ~ Vimegkehts = Ymegkehs) T 1
= Vimogkehrr T Cmogkens © 0o D)L by (2:1),
V(]m—1)k+h+2 :
Hence
= =
0 N V(m-i)k+h+2
Now N is the only number of theform SiVi, t SaVi,_, T 8, Viy with

a=m+1 and i, = (m - 1)k+h+ 2. Hence, by the proof of the sufficiency,

{n;n: SqV: + SyVs _1+-... +Safvi1§ = m-1Dk+h+2 and o = m}

lo i
U{N - 2s Vit = {o, 1, 2, -

i
o
s Vim_t)kth+2 ) °
Therefore, by (5.4), N can be put in the form

N = s1via + szv]-a_1 oo + Sa,Vi1

with ¢ = m. Hence, and by (5.3) N hastwo representations in the form N =

81Vj, * S2Vig_y toeee ks Vi which contradicts our assumption that (v,) is
an (h+ 1,k;S) base for [0,0].
We conclude therefore that s, = (_1)n+1 for n = 1. This completes

the proof of Theorem 7.
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6. PROOF OF THEOREM 8

We show that if (v} is defined by (2.8) then the defining relations (2.1)
of the (h,k)th Fibonacci sequence hold,
If a <b then |2

bl = 0. Hence the infinite sum of (2.8) contains only a
finite number of non-zero terms, In fact, for 1 = n =k, the relation (2.8)

L))

if k=h, or v, T (n> if k =h+1, and so the first of the relations (2.1)

reduces to

i
holds. On the other hand, if n = k, by checking each stage with h = k and

h+1 =k, and using the fact that

()= 00)-6o0)

we have
Voe1 " Vi T (k- h)
o0 n-1-h+@k-1)(2-1i)
= (k-h)+ D, ( ( ( )
i=k-h i
% n-k-h+(k-1)(2-1i
> < ‘( ( )
i=k-h i
w sm-1-h+k-1(2-i) ) n-1-h+k-1)(2-i)
?1+Z:< )+ 2 ( o
i=1 i i=1+k~-h i-1
0 n-1-h+(k-1)(2-1i)
= 1-(k-h)+2 ( )
i=1 i

(n—l—h+(k—1)(2—i)>é
+
i-1

)
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©  fn-h+(k-1)Q - i)
E )

i=k-h i

1]

=V, s as required,
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* kKoK K
A NEW IMPORTANT FORMULA FOR LUCAS NUMBERS

Dov Jarden
Jerusalem, Israel

The formula

(1) —— = (Lyn - 3)% + (5Fyp)?

may be easily verified putting Ln ="+ Bn ,

n n
F =2 -F  p=-_1,

n V5

Since for n > 0, (1) gives a decomposition of Lygn /Loy into a sum of
2 squares, and since any divisor of a sum of 2 squares is -1 (mod 4), it follows

that any primitive divisor of Liypp, n >0, is -1 (mod 4) .
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