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1. INTRODUCTION 

In this paper we discuss the problem of representing uniquely each mem-
ber of an arbitrary infinite interval of integers. The integers of the interval* 
and no others, are to be expressed as sums of terms of a sequence (b ) of 
integers. We also discuss the problem of representing uniquely each positive 
integer, and no other integer, as the linear combination of terms of a sequence 
(b ) of integers, where the coefficients in the linear combination are prescribed 
and have the value +1 or - 1 . In each problem, roughly speaking, we choose 
an integer k — 1 and require that any two terms of (b ) whose suffixes dif-
fer by less than k shall not both be used in the representation of any given 
integer. The precise definitions and results are in the next section, where we 
also show the way in which earlier work [l] by one of us (D. E..D.) is related 
to our definition of an (h,k) base. 

In a later paper we will discuss an analogous problem of representing 
uniquely each real number in the interval (0 ,c] , where c is any positive 
real number. Finally, we would like to thank Professor R0 Rado for his help-
ful suggestions in the preparation of this paper* 

2. STATEMENT OF RESULTS 

Throughout this paper, h, k and m are integers such that 

h + l > k > h ^ 0 , k ^ l a n d m ^ l . 

Also, unless we state otherwise for a particular sequence, the subscript of the 
first term of a finite or infinite sequence is the number 1, e. g. , 

(an) = (a^ag,---) . 

th We denote by (v ) the (h,k) Fibonacci sequence defined by 
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(2.1) 
v = n n 
v = v + v , + (k -n n - i n - k N 

for 1 ^ n ^ k, 

- h) for n > k . 

An equivalent definition of this sequence was given (for h > 1) in [1] (p. 144). 
We denote by (u ) the (k,k) Fibonacci sequence and by (f ) the (2.2) 
Fibonacci sequence, which is clearly the original Fibonacci sequence (1, 2, 3, 
5, 8,13, 21,e • •) . Further, we write [a,b] for the interval of integers x, a 
< x < b, with the obvious interpretation when a = ~°° or b = +°°. 

Suppose (a ), (k ) is a pair of sequences of positive integers with the 
following property P. 

P. Each integer N E [1,°°] has a unique representation 

N = a. + a. + . . . + a. 

where a = a(N) and i , - i ^ k for 1 ^ v < a. 
x ' v+i v 

It is shown in [1] (Theorem D) that if (a ) is increasing and the pair 
(a ), (k ) have the property P then kj ^ k2 — kj + 1, k2 = k for v ^ 2, 

n n th ~ V 

and (a ) is the (kl9k2) Fibonacci sequence. This result leads us to make 
the following definition. 

Definition 1. A finite or infinite sequence (b ) of integers is an (h,k) 
base for an interval [ a , b ] if each integer N £ {0} U [a,b] has a unique 
representation 

(2.2) N = b. + b. + ••• + b. , 

where 

a = a(N), i2 ^ it + h if a > l , and iy ^ i y + k for 1 <v < a 9 

and further, if N is an integer which can be expressed in the form (2.2) then 

N E {0} U [a ,b] . 

Notice that the representation of 0 in the form (2.2) is the empty sum. 
Theorem 1 is a statement in this notation of another result proved for 

h > 1 in the earlier paper ([1 ], Theorem C). This result can easily be shown 
to be true for h = 0 also, 

Theorem 1. The first n terms (v1? v2, • • • , v ) of the (h,k) Fib-
onacci sequence (v ) form an (h,k) base for [ l , v . - 1] , and (v ) forms 
an (h,k) base for [ 1, °°"|. 
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Our first new results, Theorems 2-6, are concerned with the existence 
of (h, k) bases for the infinite interval [m, 00] with m ^ 1, and for the infin-
ite intervals [™m5oo] and [-00,00]. We conjecture that there is no (h,k) base 
for [ m, 00 ] when m ^ 3, but have only been able to prove the following theorem, 

Theorem 2. If m > 1 and (b ) is an increasing sequence of integers, 
b ^ (2,3,4,° • • , 2 ,•••)> t n e n (b ) is not an (h,k). base for [m,oo]# How-
ever, (b ) = (2, 3,4,«° ® , 2 , s # ° ) is an (h,k) base for [m,°o] if and only 
if h = k = 1, and m = 28 By the statement that (b ) is an increasing se -
quence, we mean that bA ^ b2 — ° ° ° . 

It is easier to deal with the intervals [-m, <*>] and [-°o,°o], provided that 
h = k. However, we have been unable to settle the question of the existence of 
(h,k) bases for these intervals when h ^ k. 

Theorem 30 If -m is a negative integer then there exists a (k,k) base 
for [-m,°o]. 

For the set of all integers, [-00,00], there are infinitely many (k,k) 
bases, and in fact we can choose the sign which each term of a (k,k) base is 
to have, subject to the condition that the signs change infinitely often0 

Theorem 4„ Let (s ) be a sequence such that 

i s E {-1,1} for n ^ 1 , and 
n 

s e s _ = -1 for infinitely many n > 1 . 

Then there is a (k,k) base (b ) for [ -00,00 ] with s b > 0 for n ^ 1. 
For k = 2, we give an explicit example of a (k,k) base for [ -m,oo ] in 

terms of the Fibonacci sequence (f ). We first represent m in the form 

(2.4) m = f. + f. + • • • + f. , 
1 ; 11 i2 ia

 s • 

where 

i ^ > i + 2 for 1 ^ v v+1 v 

The existence and uniqueness of this representation is proved by Theorem 1. 
Next we le 
as follows 
Next we let (s ) be the sequence defined in terms of the suffixes i of (2.4) 



332 BASES FOR INFINITE INTERVALS OF INTEGERS [Nov. 

s. = - 1 for 1 <• v < a 

(2.5) 
x v^ i 

s = 1 o therwise . n 

Then an explicit formula for a (2,2) b a s e for [-m,*>] is given in : the follow-

ing theorem* 

T h e o r e m 5, Let - m be a negative integer , let the sequence (s ) be de -

fined as in (2.5), and let 

!

s f i f s ' s = 1) 

n , n .- n n~1 , for n > l S f , if S • S J = - 1 n n - i n n - i 
Then (b ) i s a (2,2) b a s e for [ -m,oo] « 

Similar ly , we have an explicit formula for a (2,2) b a s e for [-oojooj, in 

t e r m s of the Fibonacci sequence (f ). We p r e s c r i b e the sign of each t e r m of 

the b a s e , subject to the condition that the signs change infinitely often. 

T h e o r e m 6. If the sequence (s ) sa t i s f ies (2.3) and the sequence (b ) 

is de te rmined in t e r m s of (s ) by the re la t ions (2*6), then (b ) i s a (2,2) 

b a s e for r-<xy»] with s b > 0 for n > 1, L J n n 

So far we have been concerned with unique r ep resen ta t ions of in tegers as 

s u m s of t e r m s of a base . It is in te res t ing to cons ider the p rob lem of uniquely 

r ep resen t ing in tegers as l inear combinat ions of t e r m s of a sequence (b ) of 

in t ege r s , where the coefficients in the l i nea r combination a r e p r e s c r i b e d and 

have the value +1 or - 1 . We f i r s t make the following definition. 

Definition 2. Let a sequence S = (s ), where s E {- l» l} for n ^ 1, 

be given. A sequence (b ) of in tegers is an ( h + l , k ; S ) b a s e for [0,°o] if 

each in teger N G [ 0,oo] has a unique represen ta t ion 

(2.7) N = s b . + s ,b . + •• • + Sib. 
a it a-l i2

 l ia 

where 

a = a(N), i 2 - ii + h + 1 if a > 1, 

a n d i y + 1 ^ i y + k for 2 ^ v < a 
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and further, if N is an integer which can be expressed in the form (2.7) then 
NE- [0,oo] . 

th Theorem 1 shows that the (h,k) Fibonacci sequence (v ) is an (h,k) 
base for [l,°o]. It follows that (v ) is an (h,k) base for the set of all non-
negative integers, [0,oo], and we have been able to determine the conditions 
under which (v ) is an (h + 1, k;S) base for this same set of integers. 

Theorem 7. The (h,k) Fibonacci sequence (v ) is an (h + l,k;S) base 
n+l for [0,oo] if and only if s = (-1) for n — 1. 

In our last theorem we give an explicit formula for the terms of (v ), the 
th n 

(h,k) Fibonacci sequence. It is well known that the terms of the Fibonacci 
sequence (f ) are sums of the elements in the diagonals of Pascal 's triangle, 
and Theorem 8 extends this result. 

Theorem 8. 

(2.8) v = E / n - h + < k - l > < 2 - i > ) f o r n * i . 
n i=k-h V i / 

Here, as usual, (, J denotes the binomial coefficient a! /(a - b)! (b!). 

3. PROOF OF THEOREM 2 

We assume that the sequence (b ) is increasing and is an^(h,k) base 
for [m,oo], and in each of the first three cases we deduce a contradiction of 
definition! of an (h,k) base by finding a number which has two representations 
in the form (2.2). 

Lemma 1. b = n + m - 1 for 1 — n — m + h. 
n 

Proof. As the sequence (b ) is increasing, it is strictly increasing, so 
that bi = m and 

(3.1) b ^ m + n - 1 for n ^ 1 . 
x n 

The smallest number of the form (2.2) with a > 1 is b* + bj+k, and, by (3.1), 
bj_ + bi+h — 2m + h. Hence b = m + n - 1 for all n — 1 such that m + n - 1 
< 2m + h; i. e. , n — m + h. This proves Lemma 1. 

We consider now the various cases. 
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Case [ 1 ] . m ^ 3. Then by Lemma 1, 

k>i + bh+s = m + (m + h + 3 - 1) = (m + 1) 

+ (m + h + 2 - 1) = b2 + bh+2 • 

Case [ 2 ] . 1x1 = 29 k > 1. By Lemma 1, b = n + 1 for 1 < n < h + 2, 

and so bi + bi+n = 4 + h, ht + b2+h = 5 + h, and b 2 + b2+h = 6 + h. Clear ly , 

6 + h is the l a r g e s t number which can be r ep re sen ted in the form (2.2) with 

i — 2 + h and a = 2. However, the sma l l e s t number which can be r e p r e -

sented with a = 3 i s 

bl + b-t+h + b1+h+k - 4 + h + b3+fr > 4 + h + 6 + h > 1 0 + h . 

There fo re b3+h = 7 + h. But ht + b3+h = 2 + (7 + h) = 9 + h, so that 8 + h 

has no rep resen ta t ion with i^ ^ 3 + h. Hence b4+|1 = 8 + h. But then we have 

b l + b4+h = 2 + (8 + h) = 3 + (7 + h) = b2 + b3+h . 

Case [ 3 ] . m = 2, k = 1, h = 0. Then by Lemma 1, bi = 2 and b 2 

= 3. There fo re the r ep resen ta t ions of 4, 5, 6 and 7 a r e bi + bl3 bi + b2, b 2 

+ b 2 and bj + bi + b2 respect ive ly . The number 8 cannot be r ep re sen t ed in the 

form (2.2)-with ifl, ^ 2. Hence b3 = 8. S imi lar ly the number 9 cannot be r e p -

resen ted with i^ ^ 3. Hence b4 = 9. But then ht + b4 = 2 + 9 = 3 + 8 = b 2 

+ b3. 

We have now only to deal with the c a s e s when m = 2, k = 1, h = 1. 

It follows, therefore , from the contradic t ions obtained in the f i rs t 3 c a s e s that 

if (bn) is an (h,k) base for [m,oo]5 then h = k = 1 and m = 2. 
n—i Case [ 4 ] . h = k = 1, m = fy = 2, b2 = 3 and b n = 2 for n > 3. 

In this c a s e (bn) i s a (1,1) b a s e for [2,00] . 

F o r let N — 2 be an in teger . If N is even, then i ts r ep resen ta t ion in 
the form (2.2) is the binary represen ta t ion , which i s unique. If N is odd, then 

N - 3 i s even, and so the represen ta t ion of N is the binary represen ta t ion of 

N - 3 together with b2; hence this r ep resen ta t ion i s also unique,, 
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Notice that, for p ^ 3, each of the number s 2, 3, • • • , 2 P _ 1 - 2, 2 P _ 1 

p-1 - 1 , 2 F + 1, and no o the r s , can be r ep re sen t ed in the form (2.2) using (bj, 

b 2 , • # • , b _ ). This fact i s used in the proof of the next case . 

Case \5]. h = k = 1, m = 2, (bn f (2, 3, 4, 8, - • • , 2n~\ • • • ) . Again 

we a s s u m e that (bn) i s inc reas ing and is an (h,k) b a s e for [m,oo], so that, 

by Lemma 1, bj = 2 and b 2 = 3. Let p > 3 be an integer . Suppose that 

bp f 2P~ , and, if p > 3, also suppose that b3 = 4, b4 = 8, • • ° /b p _ 1 = 2P~2. 

Then, by the r e m a r k at the end of the l a s t c a s e , bp > 2 + 1. But then 2 

has no r ep resen ta t ion in the form (2.2), which cont rad ic t s definition 1 of an 

(h,k) ba se . This comple tes the proof of Theo rem 2. 

4. PROOFS OF THEOREMS 3, 4, 5 and 6 

Throughout this sect ion, namely L e m m a s 2-8 and the proofs of T h e o -

r e m s 3-6, the sequences ( t n ) , ( a n ) , (dn) and (e n ) a r e as defined immed ia t e ly 

below. We let ( t n ) be a sequence such that t E {-1, l } for n > 1. The t h r e e 

sequences ( a n ) , (dn) and (e n ) a re s imul taneously defined by induction in 

t e r m s of the sequence ( t^) . F i r s t we put a* = tj and dn = e n = 0 for n < 0„ 

If n > 1 and we have defined the t e r m s d , e for v < n - 2, and the t e r m s 

a for 1 < v < n - 1, then we define d , e _ and a as follows. v n - i n - i n 
i) d i s the l a rges t , and e , i s the sma l l e s t of the number 0 and ; n - l & n - i 

the number s r ep re sen t ab l e in the form 

(4.1) a. + a. + • • • + a. 
11 19 X 

w h e r e 

la 

i < n - 1 and i ,, . > i + k for 1 < v < a a v+i v 

1 A ON d - e . + 1 if t = + 1 
(4.2) a = < n - i n -k n n l e - d . - 1 if t = - 1 N n - i n - k n 

The re la t ion (4.2) i s c l ea r ly t r u e for n = 1 also. 

Lemma 2. (i) F o r all n, 0 < d J < d and e < e J < 0o _ ___ n_i n n n _ 1 

(ii) F o r n > 1, t a > 0* v ? n n 
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Proof, (i) Follows immediately from the definitions of (d^) and (en). 
(ii) For n ^ 1, if t^ = +1, then, by (4.2) and part (i), 

a = d - e , + 1 ^ 1 . 
n n-i n-k 

The proof when t = -1 is similar and completes the proof of Lemma 2. 
Lemma 3„ For n ^ 1, if t = +1, then d = d , + a and e = n n n-k n n 

e , and if t = - 1 , then e = e , + a and d = d n - r n n n-k n n n-l 
Proof, (i) We assume that t = +1 and show that e = e . Since 

• w n n n-i 
t = +1, by Lemma 2(ii), a > 0. The number e J i s , by definition, the 
n ' J x / J n n-l ' J ' 

smallest of the number 0 and the numbers representable in the form (4.1), and since a > 0, no smaller number can be formed by adding a . Hence n J & n 
e = e . Similar reasoning shows that d = d if t = - 1 . n n-i & n n-l n 

(ii) We assume that t = +1 and show that d = d , + a . x ' n n n-k n 
From the definition of (cL), d ^ d . + a „ We suppose that d > d . + 

v n " n n-k n ^ n n-k 
a , so that d = d , + a for some r > 0. Hence d . + a > 
n n n-r -k n- r n- r -k n - r 

d , + a . However by Lemma 2(i), d < d , , so that a — a . 
n-k n J v " n - r -k n-k' n - r n Since t = +1 it follows from Lemma 2(ii) that a > 0. Therefore a > 

n v ' n n- r 
0 and so t _ = +1. Therefore, by (4.2), 
(4.3) d - a , + l ^ d - e j + l . 
v ! n - r - i n- r -k n-i n-k 

However, by Lemma 2(i), d ^ d and -e , — -e , , which con— 
3 J W J n-l n - r - i n-k n- r -k 

tradicts (4.3) and so proves that d = d , + a . The proof that if t = -1 
v ' * n n-k n ^ n then e = e , + a is similar. This completes the proof of Lemma 3. n n-k n ^ ^ 

Lemma 4. For all n, the finite sequence (als a2, ° • • , an) is a (k,k) 
base for fe , d 1. L n nJ 

Proof. We use induction upon n. When n < 1, (alf a2,° • • , a n ) = <p9 

the empty set. Since e = d = 0 , the lemma is true in this case. * J n n 
Let m ^ 1, and suppose the lemma is true for n < m. Then (al9 a2, 

° • • , a , ) is a (k,k) base for fe , ,d , 1. From (4.2) and Lemma 2(i), ' m-k ; v ' ' L m-ks m-kJ \ / \ /» 
if t = +l then a + e , > d , , and if t = -1 then a + d , < m m m-k m-k m m m-k 
e , . Therefore (a*, SL9, • • • , a , , a ) is a (k,k) base for m-k v 1$ l9 m-k m7

 o
 v ' } 

fe , , d , 1 M fe , + a , d , + a ] . L m-k m-kJ ^ L m-k m m-k mJ 
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Also by the induction hypothesis, (ala a2, ° • • , a ) is abase for [e _ , 
d™ J - B y (4°2h i f t = + 1 t h e n d + 1 = a + e , , and if t = -1 m-l J /s m m-i m m-ks m 
then e - 1 = a + d , 0 Since also, from Lemma 2(i), 

m-i m m-k ' W J 

Te . d 1 D [e , f d , 1 L m - r m-i J — L m-k* m-kJ 

it follows that (a1s a2,° • • , a m ) is a (k.k) base for Te , , d , + a 1 if t \ i> t> m/ v » / L m - k ' m-k mJ m 
=+1 , or for fe , + a ,d ] if t = - 1 . Hence, by Lemma 3, (a*, a*. 

L m-k ms m-i J m * J 9 x v i9 
BO° s a ) is a (k.k) base for fe , d 1. m7 \ » / L m mJ 

Lemma 4 now follows by induction* 
Proof of Theorem 4. Suppose t = s for n ^ 1, where (s ) is the 

— rf n n J \ n / 

sequence defined in (2.3). Then (t ) has the additional property that t • t 
= -1 for infinitely many n ^ 1. It is then clear from Lemmas 2(ii) and 3 that 
d ~*-oo and e -* -oo as n -* °°, so that, by Lemma 4 (a ) is a (k,k) base 
for [-00,00], We have already shown (Lemma 2(ii)) that a t > 0 for n ^ 1, 
so that Theorem 4 is proved, 

Only part (i) of the following lemma is needed in this section. Part (ii) is 
used in Section 5e We let N (Jt) be the number of finite sequences (ils i2,8 • • , 
ia) of positive integers such that 

(4.4) 1 < i^ < n, i2 > it + i if a > 1, and i ^ i + k for 2 ^ v < a ; 

and are only interested in the values I = h and £ = h + 1. 
Lemma 5. (i) For n ^ 1, N (h) = v ,4 , 

(ii) For n > 1, N n ( h + 1} = V n + 1. 
Proof, (i) By Theorem 1, for n ^ 1, there is a 1:1 correspondence be-

tween sums of the form v. + v. + ° • • + v. with condition (4.4) applied with 
ft = h, and the integers in fO, v ,4 - l ] e Hence N (h) = v . . 

L n+i J n n"r"i 
(ii) If each finite sequence (i1? i2, •• • »ia) of positive integers, 

with condition (4.4) applied with ft = h, is transformed by putting it = ]1 and 
i + 1 •= j for 2 ^ v ^ ce , then we obtain all but one of the finite sequences 
(3i» J2*° °8 *3a) o f positive integers, where 1 < j ^ < n + 1, j 2 ^ j 4 + h + 1 if 
a ^ 1 and j + > j + k for 2 ^v < a 0 The finite sequence we do not obtain 
i s (Ji) 9 when j x = n + 1. Therefore, by part (i), N (h + 1)• = v + + 1 for 
n > 1. Hence N (h + 1) = v + 1 for n > 2. As part (ii) is clearly true when 
n = 1, the proof of Lemma 5 is completed 
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Lemma 6. 

u M j for n — k n-k+i 
(d - d ) - (e - e ) = { 1 for 1 < n < k 

n n - i n n - l J 
• for n < 1 . 

The sequence (u ) i s the (k,k) Fibonacci sequence. 

Proof. By L e m m a 5(i), N (k) = u , for n > 1. The re fo re it follows 
— J n n+i from L e m m a 4 that d - e = u ,, - 1. Hence for n > 2, n n n+i 

(d - d , ) - (e - e J = (d - e ) - (d - e J n n - l n n - i n n n - i n - i 
= (u _,_ - 1) - (u - 1) 

n+i n 

!

u , , for n > k , 
n-k+l 

1 for 2 < n < k . 

The r e su l t is easi ly seen to be t r u e for n = 1 and i s t r iv ia l ly t r ue for n < 1. 

Th is p roves Lemma 6. 

L e m m a 7e If k = 2, then aj = tj and for n > 1, 

a 
n 

t f if t • t = 1 , 
n n n n - l 

t f if t • t = - 1 . 
n n - l n n - l 

The sequence (f ) is the (2,2) Fibonacci sequence (1, 2, 3, 5, 8, * • • ) . 

Proof. By definition aA = t i . 

Let n ^ 2 and t • t , = 1. By Lemma 3, if ti = +1 then a = d -n n - i J l n n 
d and e = e a = e , and if t = - 1 then a = e - e ^ and d = n-2 n n - l n-2 n n n n-2 n 
d , = d . Also, by L e m m a 2(i), 0 < d < d and e < e ^ < 0. Hence n - l n-2 J n-2 n n n-2 

a ={t (d - d • ) - (e - e J } n L n n n-2 n n-2 J 

= t {(d - d ) - (e - e J + (d - d J - (e H - e )} nL n n - i n n - l n - i n - 2 ' n - l n-2 J 
( t (f + fn_ ) if n > 3 | 

= k V " ^ I1)"" if n= 2 J ^ y L ™ ^ a 6 , 
{ nx n - i I 

- t f . n n 

Now let t • t = - 1 . Then s imi l a r ly by L e m m a s 2(i) and 3, 
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I d - d , if t = +1 , 

n n - i n ? 

e - e , if t = - 1 , n n - i n = t {(d - d ) - (e - e .)} nLX n n - i n n - i J 
= t f j9 by L e m m a 6 . n n - i J 

This p roves L e m m a 7„ 

Proof of T h e o r e m 6. We take k = 2. We suppose that t = s for 
^ n n 

n > 1, where (s ) i s the sequence defined in (2.3). Then, by T h e o r e m 4, 
(a ) i s a (2,2) b a s e for T 1 with a s > 0 for n ^ 1. But bv L e m -

n L J n n J 

m a 7, &i - Sj and 

I s f if s n • sn__i = 1 I 
a = \ r .o - / for n ^ 1. n J s f , i f s • s , = - 1 1 f n n - l n n - i / 

The re fo re the sequence (a ) i s the s a m e as the sequence (b ) defined in the 

s ta tement of T h e o r e m 6. Hence (br,) i s a (2,2) ba se for [-00,001 with a b 
11 L J n n 

> 0 for n > 1. This p roves T h e o r e m 6. 
L e m m a 8. F o r n ^ 1, if x i s an in teger such that -u , + 1 < x ^ 0 
„_____——- ' o n + i 

then t h e r e exis ts a choice of (t1? t2, ° • • , t^) for which e = x. 
Proof. We u s e induction upon n„ If ' t j = +1 then ei = 0, while if tj 

= - 1 then ei = - 1 ; s ince -u2 + 1 = - 1 , the L e m m a i s t r u e in the c a s e when 

n = 1. 
Let m > 2 be an in teger and suppose that the L e m m a i s t r ue for 1 < n 

< m„ Then if -u + 1 < x < 0 t h e r e ex i s t s a choice of (t1? t2, • • • j t ^ ^ ) , 

which we denote by (t\, t ' , • • • , t m _ i ) , for which e = x. Hence, if we 
^ m—1 

choose ( t l 9 1 2 , °8 s , t m ) to be (tj, t j , - " , Vm_i, +1), then by L e m m a 3, e = x. 

However, suppose that 

(4.5) -u , < x < -u 
m+i m 

Then 

(4.6) x + u 
m 

There fo re , by (4.5) and (4.6), 
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-u . + 1 + u ,, , ^ x + u ,, , < 0 if m ^ k , m+i m+l -k m+i -k 
(4.7) and 

- u _ + l + l ^ x + 1 ^ 0 . m+i 

But, f rom (2.1), 

-u , , + 1 + u . . i f m ^ k , m+i m+l -k 
(4.8) -u + l = I - u ^ + 1 + 1 if 2 < m < k . 

m J m+i 

There fo re , by (4.7) and (4.8), 

I (-u + 1) ^ x + u , , , < 0 if m > k, and 
(4.9) m m 1 - k 

I (-u + l ) 2 = x + 1 ^ 0 if 2 < m < k . 
\ m 

There fo re , by the induction hypothesis and (4.9), t he r e ex i s t s a choice of 

( t l 9 1 2 , • • • , t m _ i ) , which we denote by (t?1? t^, • • • , t ^ ^ ) , for which 

(4.10) e A 
m - l 

/ x + u , , if m ^ k ; 1 m+l -k 

x + 1 if 2 < m < k , 

If we choose (t1? t 2 , ' " ' , t m ) to be (t^, t£, • * • , t m - 1 , -1 ) , then by Lemma 3, 

d = d 4, and so by Lemma 6, m m - i J 

I e , - u , . i f m ^ k , I m - l m+l -k 
( 4 , 1 1 ) e m J e - 1 if 2 < m < k . 

m - l 

Hence, by (4.10) and (4.11), e = x. 

L e m m a 8 now follows by induction. 

Proof of T h e o r e m 3. If p i s an in teger such that -u + 1 < - m then, 

by L e m m a s 4 and 8, t h e r e ex i s t s a choice of (t1? t2, • • • , t p ) , which we denote 

by (tT, V, • • • , t' ), such that (a1? a2, ° • • , ap) i s a (k,k) ba se for [ - m , dp ] . 
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Then, if t = t^ for 1 < n < p and t = +1 for n > p, by Lemmas 3 and 
4, (a1? a2, • • •, an) is a (k,k) base for [ - m , d ] for n > p. By Lemmas 2 (ii) 
and 3, d — oo as n-^oo, Hence (a ) is a (k,k) base for [-m,oo]8 

Proof of Theorem 5. We take k = 2. We suppose that t = s for — — —, fr n n 
n > 1, where (s ) is the sequence defined in (2.5). By (2.4), i > iv+ 2 
for 1 < v < a, and so, by (2.5) and Lemma 2(ii), for n > i + 1, 

(4.12) e = a. ^ + a. _̂  + • • • + a. ^ . 

However, by Lemma 7, aj = Sj and 

I s f if s • s , = +1 I n n n n-i / 

f .f J for n > 2 s f , if s • s = -1 n n-l n n-i I 
Hence the sequence (a ) is the same as the sequence (bn) defined in (2.6). 
But by (4.13) and (2.5), a j v + 1 = Sj +1£j[ = -fj for 1 < v < a. Hence, by 
(4.12) and (2.4), e = -m for n > ia + 1. From Lemmas 2(ii) and 3, d -* oo. 
as n-*oo, and so, by Lemma 4, (bn) is a (2,2) base for [-m,oo], 

5. PROOF OF THEOREM 7 

Let S = (sn) be a sequence such that s E {-1> 1} for n > 1, let m 
be a positive integer, and let (i1? i2,e " • , i#) be a finite sequence of positive 
integers such that 

(5.1) i2 > ii + h + 1 if a > 1 and i > i v + k for 2 < v < a . 

Lemma 9. If (i1? i2, • • • , i^,) = <f>, the empty set, then 

SiVh + S2Via-i + ' ' ' + S^vii = ° • 

Lemma 10. If si = +1 then s^yi + S2VJT + • •e + s^v^ ^ 0. 
Proof. Let sj = 1. If a = 1, then s.v,- + SpV-,- + • • • + ŝ v-.v = v* 

> 1. If or > 1 then 
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s i% + s*%-i + - * ' + S^vii " % " (%-i + % . 2
 + ' ' ' + v i i } 

~ V ia " ( v W + 1 " 1 ) s by T h e o r e m 15 

- 1-

Thi s , together with Lemma 9, p roves L e m m a 10. 
n+i Proof of Sufficiency. Suppose that s = (-1) for n — 1, and that 

i ^ m. Since (vn) i s a s t r i c t ly inc reas ing sequence, it follows that if a ^ 1 

then SiVjL + s2Vi + • • • + s^Vj ^ v^ — v . Hence, and in view of L e m -

m a s 9 and 10, 

(5.2) 0 ^ slViQf + S2V1Q/_1 + • - + s0?vi l =£ v m . 

We show now that any two dist inct finite sequences ( i l 5 i 2 !
t , o , i ^ ) which 

satisfy (5.1) yield dis t inct va lues of s-̂ v-; + s2v.; + • • e + s v- • Suppose 

the re fore that two such dist inct finite sequences a r e (ji, j 2 , • • • , ]p ) and (g1? 

g2»'" V» Sy)« We suppose without loss of general i ty that v ^ —. v , and c o n -

s ider t h ree c a s e s . 

Case [ l ] . |8 = 1. Then 

SlVj^ + S . V j ^ + . . . + SpVh = VJ^ 2> V g y ^ S l V g y + S 2 V g y _ 1 + ^ + S y V g i 9 

Case [ 2 ] , j8 = 2. Then 

> 2 3)3-1 

Case J 3 ] . jS 

Then 

* + Si3V3r = v3/3 - v3,3-i 

" v3/3 " v3/3-h-l 

^ V j ^ " V k = ̂ r1, lf k = h 1 

= 2. 



1967] BASES FOR INFINITE INTERVALS OF INTEGERS 343 

h) 

> V J ^ 

" v ^ 

^ 

= VJ/3 

" v g y 

- VJ/3-l 

- VJ/3-k 

- v j ) 3_k - (k - 1 

- 1, by (2.1) , 

> S l V g y + S 2 V g y + . . . + s v 
-i y Si 

By Lemma 5(ii), the number of dis t inct finite sequences (il9 i2, • ° - , i#) 

with ia < m which satisfy (5.11) i s v + 1. There fo re , s ince any two such 

dis t inct finite sequences yield dis t inct va lues of s^v; + S2VJ; + • • ° + s^Vj , 

and in view of (5.2), it follows that (v1? v2, • •• , v m ) i s an (h + 1, k;S) b a s e 
n+i for [ 0 , v m ] when s = (-1) for n > 1. The sufficiency of the condition 

follows. 

Proof of Necess i ty . Suppose that (vn) is an (h + l ,k;S) base for [ 0, 
°o]e We show that s = (-1) for n ^ 1* Clear ly s$ = +1, for o therwise 

n n+i 
slVi = - 1 , a contradiction,, We suppose that s = (-1) for 1 ^ n ^ m 
and that s = (-1) , and deduce a contradict ion in every c a s e . 

Case [ 1 ] . m = 1. Then st = s 2 = +1. We wr i t e M = v h + 2 - v l e If 

a = 1 and ia > h + 2 then SJVJL + s2v-; + • • • + s Vj = v ^ > M, whe rea s 

if a = 1 and ia < h + 1 then 

M - v h + 2 - V l 

= Vl + Vh+2-k + ( k - h ) " ^ ** {ZA) 

= | V h+i + v2 ~ vi> i f h = k ' 
( v u + 1 + Vi + 1 - v1? if h + 1 = k, 

h+l ia 1 w * ta-i a xi 

On the o ther hand if a > 1 then i > h + 2, and so 

s i v i a + S 2 % - i + ° " + S * v i i - % + v i * - i " ( v ^ - 2 + %-3 + ' * ' + V 

- V i ^ + V**-l " ( % - 2 + 1 " 1 ) J 

by T h e o r e m 1, 

> v,- + 1 

> v, ̂  > M . 
h+2 
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Hence M f Sf^ + s2v-i + • • • + S^VJ, for any finite sequence (i l s i2, 

••••>!#) satisfying (5.1), which cont rad ic t s our assumption that (vn) i s an 

(h + l ,k ;S) b a s e for [0,oo]. 

Case [ 2 ] . m > 1. We wr i t e 

(5.3) N = Siv7 v, , + SoV/ x, , + • • • + s v, + s Vi . 
v ' 1 (m-i)k+h+2 2 (m-2)k+h+2 m h+2 m+i * 

It follows from L e m m a 10 that N ^ 0. If m = 2 then N = v. ,, 
k+h-2 ^u ,„ - v i ^ v i ,u , = V/ v. ,, , , while if m > %•, then h+2 2 k+h+2 (m-i)k+h+2 

Hence 

~ v(m-i)k+h+2 '^v(m-2)k+h+2 v (m-s) k+h+2 

= v / HM^U, - (v/ v, ± u ± , + (k - h)) + 1, by (2.1) (m-i)k+h+2 (m-2)k+h+i J 

< v 
(m-l) k+h+2 " 

0 " N " V(m-l)k+h+2 • 

Now N i s the only number of the form S{Vi + s2v; + • • • + s VJJ with 

a = m + 1 and i a — (m - l )k + h + 2. Hence, by the proof of the sufficiency, 

{n: n = S j v ^ + s ^ ^ + • • • + s ^ ; i f f < ( m - l ) k + h + 2 a n d a < m } 

U { N - 2 s m + l V l } = {0, 1, 2, • • • • v ( m _ l ) k + h + 2 } . 

There fo re , by (5.4), N can be put in the form 

with a < m. Hence, and by (5.3) N has two rep resen ta t ions in the form N = 

s-tV; + s2v^ + ••• + s VJ_ , which cont rad ic t s our assumpt ion that (v n ) i s 

an ( h + l , k ; S ) b a s e for [0,oo]. 
n+l We conclude there fore that s = (-1) for n > 1. Th is comple tes 

the proof of Theo rem 7. 
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6. PROOF OF THEOREM 8 

We show that if (v n ) Is defined by (2.8) then the defining re la t ions (2.1) 

of the (h5k) Fibonacci sequence hold, 

If a < b then I , J = 0. Hence the infinite sum of (2„8) contains only a 

finite number of non-ze ro t e r m s . In fact, for 1 ^ n ^ k, the re la t ion (2.8) 

r e d u c e s to 

rn + k - 2> 

T - - i o r (7) 
--ft if k = h, o r v = I 1 1 if k = h + 1, and so the f i r s t of the re la t ions (2.1) 

holds. On the o ther hand, if n > k, by checking each s tage with h = k and 

h + 1 = k, and using the fact that 

GMVM:::). 
we have 

v + v . + (k - h) n - i n -k 
- / n - l - h + ( k - l ) ( 2 - i ) \ 

1)+ S 1 ) 
i=k-h x i ' 

°o / n - k - h + ( k - 1)(2 - i) \ 
+ Z ) 

i=k-h V i ' 
00 / n - 1 - h + (k - 1)(2 - i ) \ °° / n - l - h + (k-

£ ( ) - T, ( : . 
i=i \ I / i=i+k-h * i - 1 

- l / n - l - h + ( k - l ) ( 2 - i ) \ 
(k-h) + E 

i=i ' V i / 
/ n - l - h + ( k - 1)(2 - i) \ / 

+ \ i - i ^ 
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- / n - h + ( k - l ) ( 2 - i ) \ 

i=k-h \ i / 

= v , a s requ i red . 
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• • • • • 

A NEW IMPORTANT FORMULA FOR LUCAS NUMBERS 

Dov J a r den 
J e r u s a l e m , I s r a e l 

The formula 

Lion 
(1) — - ( L ^ - 3)2 + (5F 2 n ) 2 

L2n 

may be eas i ly verif ied putting L = a + jS , . 

n 0n 
F = ^ - ^ , * 0 = - l - f 

n V5 
Since for n > 0, (1) gives a decomposi t ion of L 1 0 n / L 2 n into a sum of 

2 s q u a r e s , and s ince any d iv isor of a sum of 2 s q u a r e s i s - 1 (mod 4), it follows 

that any p r imi t ive d iv i sor of L^n* n > 0, is - 1 (mod 4) . 

* * * * * 


