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1. INTRODUCTION

There is a sequence of continuous functions of one variable having many
of the properties of the Fibonacci sequence of numbers, with some intriguing
variations. Derivatives and integrals of these functions are easily found, and
lead to more relations involving Fibonacci numbers. Other topics of calculus
can undoubtedly be applied to these functions with very useful and interesting
results.

Let a;, aj, a5,°** be a sequence such that 1= Ayt am_i. Then

+1 m
the power series

o i
a.x
_ i
y = E , T
i=0
satisfies the differential equation
(1) y"—y'—y:O
. . axX Bx 9
whose solution is ce” ™ + Cye"", where o and B arethe rootsof u*-u-1
= O’
1+ N5 1 -n5
o = > and B = 5

If the sequence {am} is the Fibonacci sequence {Fm}, then a; = 0
and a,; = 1, so that we get the boundary conditions x = 0, y = 0, y' = 1.
This yields (see [1])

(2) y = — and F = g._i
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On the other hand, if the sequence {am} is the Lucas sequence {Lm},
then a; = 2 and a, = 1, so that we get the boundary conditions x = 0, y =
2, y' =1, yielding
(3) y:eaxﬁteﬁX and L _ =a + B

The writing of (1) in the form y'" = y'+y is very suggestive: the sum
of the function and its first derivative is the second derivative. Andgenerally,

if y is any solution of (1), we see that

) m) | (m-i)

(1a)

This suggests that we use the notation

X e/Sx ®)
fi®) = ————, fix) = fix), LE =K, HE) = {7,

and so forth. Thus

(&3

m)( moex Bmeﬁx

4) .00 = ) =

N5
giving us the sequence of functions {fm(x)jL with the property that

(5) fon () = 00 + £ ()

We shall refer to these functions as Fibonacci functions.

Likewiseif lj(x) = Xy eﬁx, Lix) = lé(x), Iy(x) = 16'(}(), etc., we have
(®) T i s
(7) 1m+1(X) = 1m(X) + 1m_1(X)

and these functions will be called Lucas functions here.
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Evidently, Fy = £5(0) = 0, Fy = £(0) = 1, Fy = £,(0) = 1, Fy = £,(0)

= 2" E

m m
(8) Fm = fm(o) - 9'—;__5_

N5
with similar results for Lucas numbers.
Let us define
-k ox -k _px
9) fo(x) = &S = B¢ , l (x) = a—keozx + ,8_keﬁx
-k NG k

With the understanding that fg_k)(x) is the kth antiderivative of fy(x), and
similarly for 10(_k) (k}, we can easily verify that all the preceding results (2)
through (8) hold for m a negative integer.

2. GRAPHS

Elementary notions of calculus regarding intercepts, slope, symmetry,
extent, critical points, points of inflection, etc,, may be used in plotting the
graphs of these functions. Figure 1 shows the graphs of some of the Fibonacci’
functions fm(x).

Note first of all that the y-intercept of the curve y = fm(x) is Fm'

Observe also that the functions with even subscripts are monotonic in-
creasing, and extend from -o to +oo both horizontally and vertically. The
functions with odd subscripts, however, are never negative (since 3 < 0), and
each has one relative minimum,

In fact, fy_4(x), where k is any integer, has its relative minimum at
the zero of fyk(x), which is also the x at which fyx_4(x) has its point of
inflection,

Let us therefore call these points xyk. Thatis, xyk is such that

Let the minima of fj_,(x) be called y,x. Thus
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GRAPHS OF THE FUNCTIONS fm(x) |

Fig. 1

(11) Yok = fok—3(Xok)

Some manipulation and calculation result in

(12) 2 = Eiog L x —0.86k
V5 @
2k
1 V5 Xk K 1
(13) ik = |5 = e =% (0.65), where X = 5 Xk

Thus the minima of fyi_;(x) occur at points evenly spaced alongthe neg-
ative x-axis and have values in geometric progression, which approach 0 as
X — 000,

Because

1
Vo = o2 %2k
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at these minimum points, they lie onthe graph of y =V e® (see the dotted-line
curve in Fig, 1).

Since

b 1o = fope(Xop) + fop_1(Xo) = 0 + yox = yok

and since

fokpo(kol) = fori(Xok) + fokxok) = yok + 0 = yok

we see that the graphs of

foe_4(x), D), and fHkis(x)

all intersect at (Xg}, ¥ox)-

Likewise

Bopyasor) = fokrook) + fopy1(ok) = 2y

ete. ; and induction leads to

X X
Kk k
(14) foktj (Xok) = Fiyok = Fje , or fy(xgk) = Fm-pkyok = Fm-gke

which is a specialization of the more general relation to be derived in the next

section,

3. AN IMPORTANT IDENTITY

That the identity

Fm+n = FIn—iFn * FrnFn+1

for Fibonacci numbers has a counterpart for the Fibonacci functions can be

investigated by substituting into its right side:
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£ ®f &) + £ f () =

-1 -
Q,m X Bm 1eﬁx aneax B Bne’BX . ameafx _ ‘Bmeﬁx. Q‘n+1ea/x _ Bn+1eﬁx
Vs V3 Vs V5

Multiplying and simplifying using of = -1, the terms in eaX+’8 X vanish,
giving us

-1 -

o (1 + az)emx + ﬁmﬂl 1(1 + Bz)ez’gX
5

whence

1+a?=0aV5 1+p% = -g\5
lead to

fm—i(x)fn(x) + fm(x)an(X) = fm+n(2x)

We see then that the formula is the same except for the important change
in the argument. We generalize this by repeating almost exactly the same

steps, and obtain

(15) fpn®@ + V) = £ @E )+ @ ()

4., APPLICATION OF (15) TO GRAPHS

Using the identity (15) with m = 2k, n = 0, u = Xy, and v =t, we

obtain

Be(xoi + 1) = fok—y(Kokdfo(t) + fole(op) £4(t) = yorfy(t) + 0 - £(t)
-
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Similarly

(17) fzk,},i(sz + t) = e fi(t)

Hence each of the graphs can be obtained from the graph of either y =

fo(x) or y = fi(x), according to whether m is even or odd, by expanding it

b
by the factor e K and translating it -x,j units to the left,

Since fy(x) and f;(x) in turn can be written as

X X
2 2 _
(18) fy(x) = zet sinh @ x, fi(x) = 2e cosh @ X + cosh 1(@>
Vs 2 5 2 2

all of the graphs are distortions of hyperbolic sine or cosine curves through
multiplication by VeX.

5. INTEGRALS
From the definition of f (x), the antiderivative of f (x) is f (x).
m m m-1i

This leads to a wealth of problems involving Fibonacci numbers, two of which
follow, (See Fig, 2.)

Y =t ™

Fig. 2



378 FIBONACCI FUNCTIONS [Oct.

Let A = the area under the curve fy, (x) between x = xp and x = 0

and above the x-axis, Then

0

0
A= /f2k+1(x)dx = r(x) ] = Lr(0) - Hr(p) = Fog - 0 = Fog
Xok

sz
More generally,
Xon X. X
(19) f x)dx = F e k. r e "
m-+i m-2k m-2n

Xok
Use of (15) and formulas for differentiation and integrationlead to many others.
6. IDENTITIES
Many of the familiar identities for Fibonacci and Lucas numbers, besides
(15), also have their counterparts for these Fibonacci and Lucas functions,

Obtaining them is often merely a matter of substitution of

m m
aea/x_ﬁeﬁx

m .\/g m

into one side of the identity, and the use of such relations as o+ 8 =1, of =
-1, &+ 1 = aV5, ete.

Thus, for example, one easily obtains

(20) £ ) = £ )+ ()7
(21) lm(x) = fm_i(x) + me(x)
(22) 52 (x) = 12 () + (-7 'ae™

m+i X

(28) 6 = (DT (x)
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(24) 5 5

k
( Y +\/§fm(x)) Ly (R VBl ()
Note that the corresponding identities for the Fibonacci and Lucas num-
bers emerge immediately when x = 0.
From the formula (15) already treated come such familiar-appearing

identities as

(25) fym-1(29) = £ () + () and fyy(2x) = £ (1 (x)

(26) fam-1(3%) = £ () + 3f I @) + £ ), and

— af? 2 3
f3m(3x) Sfm_i(x)fm(x) + Sfm_l(x)fm(x) + 2fm(x)
while a generalization by induction on k and p yields

K
k -i i
27) e ) = Z (1) Fpri‘n Lt ()

i=0
By using (15) to write

m-+n+1

(@6, = (DL @0 = £ )]

and

()t

n+2 m+n+3

(Dl @ ) = D000~ Tyl + ]

and adding, one obtains

fm(u)fn(v) = (—1)2[fm+2(u)fn+2(v) - fm+n+2(u + V)]

Repeating the process, and the use of induction lead to

(u)fn+r(v) - F 1 (u + V):l

(28) £ () = (—1>I'[f R

m+r



380 FIBONACCI FUNCTIONS [Oct.

Multiplication of (28) by fm(ﬁj‘ .gives
£ Wt (v = (-1)r{ fr @[, @t 0] - Fr[fm(u)fm i@ v)]}

while the use of (28) to expand the expressions in the square brackets here

yields

-1)2r ~ 9] 2

-1 [f2m+r(u)fn+2r(v) 2Frfrnﬂ'(u)fm+n+2r(u vt Fr f2m+n+2r(211 * v)]
whence induction leads to

k
(29) fl:n(u)fn(v) - (_1)kr Z<il'l(>(—1)1F;tl;ir(u)fn+kr+im(iu v

i=0

These two formulas are counterparts of two given by Halton [2] In
exactly the same way as he did, (29) can be used to develop a host of identities
by choosing particular values of m, n, k, and r,

It is interesting to note that

(30) F i (v-ue' = (—1)r[fm @) - £ +1,(v):]

isa "sibling" of (28), havingbeen derived by substitutionusing (4), as a counter-

part of the same formula
FF o= -1)F

F - FF .
m+r- n+r r  mintr

One is intrigued by the conjecture that they are both special cases of a more

general formula in which no capital F's appear.

7. FIBONACCI FUNCTIONS OF TWO VARIABLES

Suppose {am} is replaced by {fm(x)} in the series
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to give a function of two variables ¢(x,y).

2 3
(31) $(y) = () + LAY+ h) o+ G0 5 ke

Differentiating term-by-term, we obtain

o ;
bd>agx},(yl = £1(x) + HRY + fHx) 52’_' 1) % .

QLY = o + (9 + (¥

2 3y2 4vy®
e 5’1+f3(x)—3.,1+f4(x)l—+..,

4!

We see that

d(x, V) _ J(x,Y)
dx oy

3

and likewise it can be verified that all the second partial derivatives are the

same, all the third partial derivatives are the same, etc. Let us therefore
adopt the notation

b y) = dixy), by = BEW - Y

dx oy
_ dx,y) _ *x,y) _ M. y)
¢2(Xs y) aX2 axay ay2 )
so that
¢ i fe'e) i
X, x
(32) b % 3) ?jy_ﬂ meﬂ 9 g meﬂ i
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where r and s are positive integers such that r + s = m, Note that

33 ¢ (%0 = f (0, ¢ (0,5) = f (), and & (0,00 = F_ .

Expand (bm(x, y) into a power series in two variables at (0, 0):

) 3¢(0:0) 3¢, (0,0)
¢,y = ¢ 0,0 +[X o TV Ty

2 2¢ ¢ 2
2. Jx2 oxdy 3y?

il

1
ES — 2 2 .
Fm [XFmH * yFmﬂ.]Jr 2! [X Fm+2 * ZXyFmﬂ Ty Fm+2] *

- Gty) L p & E¥? =+ y)°
Fn ¥ Frn 1 FE 2! T F e 3! o
Thus
m a(xty) _ om B(xty)
(34) by = I (x +y) = L E.2
: VA
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