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1. INTRODUCTION 

T h e r e i s a sequence of continuous functions of one var iab le having many 

of the p r o p e r t i e s of the Fibonacci sequence of n u m b e r s , with some intr iguing 

va r i a t ions . Der iva t ives and in tegra ls of these functions a r e easi ly found, and 

lead to m o r e re la t ions involving Fibonacci number s . Other topics of calculus 

can undoubtedly be applied to these functions with ve ry useful and in te res t ing 

r e s u l t s . 

Let an, a1s a9,e - * be a sequence such that a ,, = a + a . Then 
0? l 5 l> ^ m + i m m - i 

the power s e r i e s 

00 1 
a.x 

y = 
i=o 

sa t i s f ies the differential equation 

(i) y n - yf - y = o 

whose solution i s ctea + C2e^ , where a and /5 a r e the roo t s of u2 - u - 1 

= 0, 

OL = —5 and p = . 

If the sequence { a } i s the Fibonacci sequence {F } , then a0 = 0 

and a,t = 1, so that we get the boundary conditions x = 0, y = 0, yf = l e 

This y ie lds (see [1] ) 

ax. _ j3x m m 
(2) y = - - £ — and F = - z^— 

V5 m V5 
371 
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On the other hand, if the sequence {a } i s the Lucas sequence {L }, 

then a0 = 2 and a1 = 1, so that we get the boundary conditions x = 0, y = 

2, yT = 1, yielding 

(3) y = e + e^ and L = a + B 

The wri t ing of (1) in the form y!T = y1 + y i s very suggest ive: the sum 

of the function and i t s f i r s t der ivat ive is the second der iva t ive . And genera l ly , 

if y i s any solution of (1), we see that 

,., v (m+l) (m) (m-l) 
( la) yv .= yv ' + yv ; 

This sugges ts that we use the notation 

ax __ /3x , v 
f0(x) = ^ ^ — , fj(x) = fj(x), f2(x) = f»(x), f3(x) = fj3'(x), 

\/5 

and so forth. Thus 

, , m ax ^m jSx 
(4) f (x) = f0K '(x) = ^ -

m ^5 

giving us the sequence of functions {f (x)} with the p roper ty that 

(5) f , (x) = f (x) + f (x) 
v ; m + r ' n r ' m - r ; 

We shall r e f e r to these functions as Fibonacci functions. 

Likewise if l0(x) = eaX + e ^ , l t(x) - lj(x), l2(x) = ro
T(x), e t c . , we have 

/rtX i / \ i(ni)/ v m ax , nm Bx 
(6) l m (x ) = 10

V ;(x) = a e + p eH 

(7) 1 (x) = 1 (x) + 1 (x) 
v ; m + r ' n r ' m - r ' 

and these functions will be cal led Lucas functions h e r e . 
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Evidently, F 0 = f0(O) = 0, Ft = it(0) = 1, F 2 = f2(0) = 1, F3 = f3(0) 

m m 
(8) F = f (0) = &— 

\I5 

with s imi l a r r e s u l t s for Lucas n u m b e r s . 

Let us define 

-k ax n-k Bx ^ i n 
/m -c / \ oi e - B e r i / \ -k ax -k £x 
(9) f , ( x ) = - - c f l_ (X) = a e + p eH 

V5 

With the unders tanding that fj (x) is the k ant ider ivat ive of f0(x), and 
(-k) 

s imi la r ly for 10
V ; (k ) , we can easi ly verify that all the preceding r e s u l t s (2) 

through (8) hold for m a negative integer . 

2. GRAPHS 

Elementa ry notions of calculus regard ing in t e r cep t s , s lope, s y m m e t r y , 

extent , c r i t i ca l points , points of inflection, e tc . , may be used in plotting the 

graphs of these functions. F igure 1 shows the graphs of some of the Fibonacci 

functions f (x). m 
Note f i r s t of all that the y - in te rcep t of the curve y = f (x) is F . 

Observe a lso that the functions with even subsc r ip t s a r e monotonic in -

c r ea s ing , and extend from -oo to +oo both horizontal ly and ver t ica l ly . The 

functions with odd s u b s c r i p t s , however, a r e never negative (since (3 < 0), and 

each has one re la t ive minimum. 

In fact, f2k-i(x) ' where k i s any in teger , has i t s r e l a t ive minimum at 

the ze ro of f2k(x)> which i s a lso the x at which f2k-2(x) n a s i t s P o m t °f 

inflection. 

Let us the re fore cal l these points x2k> That i s , x2k is such that 

(10) f2k(x2k) = 0 

Let the min ima of f2k-i(x) be cal led y2k« Thus 
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GRAPHS OF THE FUNCTIONS f (x) 

y = £ « = 
,.m_ax_ jn Bx 

(ID 

Fig. 1 

Y2k = f2k-i(x2k) 

Some manipulation and calculation result in 

(12) 4k 1 
x?k = — l o g £ » -0 .86k 

V5 a 

(13) Y2k = [-Z 8 
2k 

x k k 
e * (0.65) , where xfe 

| x 2 k 

Thus the minima of fg^.^x) occur at points evenly spaced along the neg-
ative x-axis and have values in geometric progression, which approach 0 as 
x—•-«>. 

Because 
v - P2 x 2k 
y 2 k ~ e 
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at these min imum poin t s , they l ie on the graph of y = ^ e (see the dot ted- l ine 
curve in Fig8 1). 

Since 

f2k+i(X2k) = f2k<X2k) + f2k-l(X2k) = °  + Y2k = y2k 

and s ince 

f2k+2(x2k) = f2k+l(x2k) + f2k(x2k) = Y2k + ° = Y2k 

we see that the graphs of 

f2k-i(xK f2k+i(x)3
 a n d f2k+2(x) 

al l i n t e r s e c t at (x2 k , y 2 k ) . 

Likewise 

f2k+3(x2k) = f2k+2(x2k) + f2k+i(x2k) = 2^2k > 

etc . ; and induction leads to 

X k X k 
(14) f2k+j (x2k) = F jy 2 k = Fje , or f m (x 2 k ) = F m _ 2 k y 2 k = F m _ 2 k e 

which i s a specia l iza t ion of the m o r e genera l re la t ion to be der ived in the next 

sect ion. 

30 AN IMPORTANT IDENTITY 

That the identity 

F , = F ,F + F F , m+n m - i n m n+l 

for Fibonacci number s has a coun te rpar t for the Fibonacci functions can be 

invest igated by subst i tut ing into i t s r ight s ide : 
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f (x)f (x) +• f (x)f (x) = m - r nx ' m ' r r ' 

m - i ax n m - i Bx n #x _n fix m c*x n m fix: n+l ax Ji+l /5x of e - /3 e^ g e - ; 3 e r a e - /3 e^ cy e - /3 e r 

V 5 # V 5 V 5 ° V 5 

ax~\~Bx Multiplying and simplifying using a/3 = - 1 , the t e r m s in e p vanish , 

giving us 

m+n- i . . , *>* lax , . m + n - L , n?x 2fix a (1 + al)e + [3 (1 + /3*)e M 

5 

whence 

1 + a2 = aV5, 1 + j32 = -(3\/5 

lead to 

f (x)f (x) + f (x)f H(x) = f A (2x) m - i ' nx ' n r ; n+iv ' m+nx ; 

We see then that the formula is the same except for the impor tan t change 

in the argument . We genera l ize this by repeat ing a lmos t exactly the s ame 

s t e p s , and obtain 

(15) f fu + v) = f (u)f (v) + f (u)f iv ) x ' m+nv ' m ~ r nv ' m n+iv ' 

4. APPLICATION OF (15) TO GRAPHS 

Using the identity (15) with m = 2k, n = 0, u = x 2 k s and v = t , we 

obtain 

f2k<x2k + t) = f2k-i(x2k)f0(t) + ^kt^k)^) = y2kfo(t) + ° a ii(t) 

x, 
(16) f2 k(x2 k + t) = e Kf0(t) 
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Similarly 
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(17) f2k+i(x2k + t) = e f^t) 

Hence each of the graphs can be obtained from the graph of either y = 
f0(x) or y = f-^x), according to whether m is even or odd, by expanding it 

xk by the factor e and translating it -x2^ units to the left. 
Since f0(x) and fj(x) in turn can be written as 

(18) f0(x) = 2£ i s i n h ^ f 
V5 l 

fi(x) 

X 
, 2e2 

cosh | - r x + cosh 

all of the graphs are distortions of hyperbolic sine or cosine curves through 
multiplication by V e 

5. INTEGRALS 

From the definition of f (x), the antiderivative of f (x) is f (x). 
This leads to a wealth of problems involving Fibonacci numbers, two of which 
follow. (See Fig. 2„) 
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Let A = the area under the curve f2k+1(x) between x = x2k and x = 0, 

and above the x-axis. Then 

o o 

A = J f2k+i<X)dx = f2k(x) J = f2k(°) ~ f2k(X2k) = F 2 k - 0 = F 2 k 
x2k x2k 

More generally, 

r2n x t x 

(19) / f , (x)dx = F ftTe - F , e n 

v 7 f ni+r ' m-2k m-2n / 
x2k 

Use of (15) and formulas for differentiation and integration lead to many others. 

6. IDENTITIES 

Many of the familiar identities for Fibonacci and Lucas numbers, besides 
(15), also have their counterparts for these Fibonacci and Lucas functions. 
Obtaining them is often merely a matter of substitution of 

m ax nm Bx , n 

f ( x ) = * e - P e , 1 (X) = a
meax + flme^ 

m Vs m 

into one side of the identity, and the use of such relations as a + /3 = 1, a/3 
- 1 , a2 + 1 = orV5, etc. 

Thus, for example, one easily obtains 

(20) f H(x)f (x) = f2 (x) + ( - l ) m e X 

v ' m - r ' m+r ' mx ' K f 

(21) 1 (x) = f (x) + f Ax) v ' m m - r m+iv 

(22) 5f^(x) = l^(x) + (-'l)m"14eX 

(23) f_m(x) = (-l)m + 1eXfm(-x) 
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(24) 
i (x) +V5f (X; 
m n r ' 
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i - km 
(kx) + V 5 f k m ( k x ) 

Note that the cor responding ident i t ies for the Fibonacci and Lucas n u m -

b e r s e m e r g e immedia te ly when x = 0o 

F r o m the formula (15) a l ready t r ea t ed come such f ami l i a r - appea r ing 

ident i t ies as 

(25) f 2 m . i (2x) = ^ ( x ) + f*m(x) and f2 m(2x) = f m (x ) l m (x ) 

(26) f 3 m - i (3x) = ^ ( x ) + 3f m m i (x)f^(x) + f3m(x) , and 

f3 m(3x) = 3f^_H(x)f_(x) + 3 f _ _ ( x ) f ^ ( x ) + 2f^(x) 
m - i m m - i m 

while a general iza t ion by induction on k and p y ie lds 

(27) km+p *•> - £ (•) w£.«4 
i=o 

By using (15) to wr i t e 

f (u)f (v) - (-1) f (u)f M(v) - f ^ ^ ( u + v) 

and 

^ W ^ M = (-1*2 f m + 2 < u ) W v ) - fm+n+3<u + v> 

and adding, one obtains 

f (u)f (v) = (-1)2 
n r ' n ' } Wu>Wv) " W ^ + v> 

Repeat ing the p r o c e s s , and the use of induction lead to 

(28) f
m < u ) y v ) = (-D f , (u)f , (v) - F f , , (u + v) m+r ! n+rN ' r m+n+rv 
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Multiplication of (28) by f (u) gives 

[Oct. 

^ O U y v ) = (-Dr{fm + r(u)[fm(u)fn + r(v)j - F r [ f m (u) f m + n + r (u + v)]} 

while the use of (28) to expand the expressions in the square brackets here 
yields 

(-D 2r f2 j . W f a. (v) - 2F f ^ (u)f ^ ^ (u + v) + F2 1 _>_ ^ (2u + v)l 
m + r \ / n+2rx ; r m+rN ' m+n+2rN ' r 2m+n+2rv 'J 

whence induction leads to 

(29) f^WfJv) = (-Dk rS(?)(- l ) 1F i
r tJr^fn4k r^m( i u + v) mx ' nN 

.1=0 

These two formulas are counterparts of two given by Halton [2J, In 
exactly the same way as he did, (29) can be used to develop a host of identities 
by choosing particular values of m, n, k, and r„ 

It is interesting to note that 

(30) F f (v - u)eU = ( - l ) r 

\ / m mv ; v ' 
lrc.A--v\ I •n4_T, \ / -p\ / r m 

is a ''sibling" of (28), having been derived by substitution using (4), as a counter-
part of the same formula 

F F = ( - l ) r rF m n F - F F m+r n+r r m+n+r ] • 
One is intrigued by the conjecture that they are both special cases of a more 
general formula in which no capital F*s appear. 

7. FIBONACCI FUNCTIONS OF TWO VARIABLES 

Suppose | a I is replaced by jf (xU in the series 
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i i 
1 

1=0 

to give a function of two variables $(x, y). 

(31) *(x,y) = f0(x) + f^xjy + f2(x) | J + fs(x) f j 

Differentiating term-by-term, we obtain 

^ § | ^ = fl(x) + f2(x)y + f3(x) | + f ^ ) 1^ + . . . 

^ > = 0 + fl(x) + f2(x) | f + f3(x) f f + f4(x) 4 f + . 

We see that 

d<t>(x, y) = d<ft(x, y) 
dx by 

and likewise it can be verified that all the second partial derivatives are the 
same, all the third partial derivatives are the same, e t c Let us therefore 
adopt the notation 

*0(x,y) = *(x,y) , <Mx,y) = * % * > = d - % ^ . bx by 

A (x vx = a2<fo(x,y) = d2<fr(x,y) = a2<fr(x,y) . m a 
d x 2 axdy d y 2 

so that 

(32) 0 (x>y) = a f̂ry) = y f (x) £ = Yi +.(y) £ 
\ / v m \ »J / r s / j m+iv ; i! / j m+r J / i! * 1 = 0 1 = 0 
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where r and s are positive integers such that r + s = m. Note that 

(33) 4>m(x,0) = f m (x) , <Am(0,y) = f m (y) , and * m ( 0 , 0 ) = F m 

Expand <f> (x, y) into a power s e r i e s in two variables at (0,0): 

</>m(x,y) = </>m(o,o) + 
r ^ ^ ( 0 , 0 ) d*m(o,o) 

ŝ 2 + 2xy 
bx2 

I F + x F _ + y F , 4 m m+i J m+i 2! x2F m+2 

" ^ ^ " y - +y2
 ay2 J" 

+ 2xyF _̂  + y2F , 1 + ••• J m+2 J m+2 J 

= F + F (x+y) + F (* + yli + F <2L± j £ i + 
m m+i l! m+2 2] m+s 3] 

Thus 

(34) $ m ( x ' y ) = f m ( x + y ) 

a m e « ( x + y ) __ ^me/3(x+y) 
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