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B-124 Proposed by J . H. Butchart, Northern Arizona University, Flagstaff, Ar iz . 

Show that 

00 

y^(a-/2i) = 4 , 
i=o 

where 

a0 = 1, SLt = 1, a2 = 2 , - - -

are the Fibonacci numbers. 

B-125 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Is 

n 

k=3 

ever an integer for n > 3 ? Explain. 

464 
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B-126 Proposed by J . A . H . Hunter, Toronto, Canada 

Each distinct letter in this alphametic stands, of course, for a particular 
and different digit. The advice is sound, for our FQ is truly prime. What do 
you make of it all ? 

R E A D 
F Q 

R' E A D 
F Q 

D E A R 

B-127 Proposed by Charles R. W a l l , Universi ty of Tennessee, K n o x v i l l e , Tenn. 

Show that 

2nL = 2 (mod 5) , 

2nF = 2n (mod 5) . 

B-128 Proposed by M . N . - S . Swamy, Nova Scotia Tech. Co l lege , Ha l i fax , Canada. 

Let f be the generalized Fibonacci sequence with fj = a, f2 = b , and 
f , = f + f . Le t g be the assoc ia ted genera l ized Lucas sequence defined n+i n n - i &n to 

by g = f + f _, . Also let S = f, + f, + . . . + f . It is true that S4 = g4 
J s n n-i n+l n 2 l n 4 &4 

and S8 = 3g6. Generalize these formulas0 

B-129 Proposed by Thomas P. Dence, Bowling Green State Univers i ty , Bowling 
Green , O h i o . 

For a given positive integer, k, find 

lim (F ., / L ) . 
n —»oo n+k n ' 

B-130 Proposed by Douglas L ind , Universi ty of V i r g i n i a , Char lo t tesv i l le , V a . 

Let coefficients c.(n) be defined by 
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(1 + x + x 2 ) n = c0(n) + c^njx + c2(n)x2 + . . . + c2n(n)x2n 

and show that 

2n 
c2n(2n) 

j=0 L J 

2XL 

Generalize to 

k n 

(1 + x + x2 + . . . +xK) ( 

B-131 Proposed by Charles R. W a l l , Univers i ty o f Tennessee, K n o x v i l l e , Tenn. 

Prove that for m odd 

L + L A 5F 
n-m n+m _ n 

F + F A L 
n-m n+m n 

and for m even 

F + F F 
n-m n*m _ __n 

L + L ^ L 
n-m n+m n 

SOLUTIONS 

Note: In the last issue, we inadvertently omitted M. N. S. Swamy from 
the solvers of B-100, B-101, and B-104. 

FIBONACCI-LUCAS ADDITION FORMULAS 

B-106 Proposed by H. H. Ferns, Victoria, B.C., Canada. 

Prove the following identities: 
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2F._1_. = F.L. + F.L. 1+] l ] j l 

2L. ,. = L.L. + 5F.F. . 
1+3 i 3 i J 

Solution by Charles R. W a l l , Universi ty o f Tennessee, K n o x v i l l e , Tennessee. 

From the Binet formulas we have 

F,L, + KL. = — iia1 - p1)(J + ft*) + (c^ - ^ ( a 1 + /31)! _1_ 
1 j ] * "VH" 

and 

= ^ ( « i + j -0i+h = 2F.+. , 

L.L. + 5F.F. = (a1 + p1)(a1 + / 3 ] ) + (a1 -fi1)(ai - j8 J ; 

2(ai+J + j 8 i + J ) = 2L.+. . 

Also solved by John H. Biggs, Douglas L ind, W i l l i am C . Lombard, C . B. A . Peck, 

A . G. Shannon, M« N . S. Swamy, John Wessner, David Z e i t l i n , and the 

proposer. 

AN APPROXIMATION 

B-107 Proposed by Robert S. Seamons, Yakima Va l ley Co l lege , Yak ima, Wash. 

th Let M and G be respectively the n terms of the sequences (of 
Lucas and Fibonacci) for which Mn = M^ - 2 , Mt = 39 and Gn = G ^ + 
G _ , Gj = 1, G2 = 2. Prove that 
^n-2 

M H = 1 + T V 5 G 1 , n L m J 

where m = 2n - 1 and [xj is the greatest integer function. 

Solution by Douglas L ind, Universi ty o f V i r g i n i a , Char lo t tesv i l le , V a . 



468 ELEMENTARY PROBLEMS [Dec. 

In standard notation we have M = L and G = F , . where F 
,, n 2

n n n + 1 n 

and L are the n Fibonacci and Lucas numbers, respectively. The prob-
lem then becomes to show 

V = [ 1 + V J r V ] • 
which follows immediately from Problem B™89. 

Also solved by W i l l i a m C . Lombard, C . B. A . Peck, A . G. Shannon, David 

Z e i t l i n , and the proposer. 

G E N E R A L I Z E D F I B O N A C C I N U M B E R S 

B-108 Proposed by V . E. Hoggatt , J r . , San Jose State Co l lege , San Jose, .Ca l i f . 

Let Ui = p, y2 = qs and un + 2 = u n + i + un. Also let Sn = ut + u2 + . . . 
+ u . It is true that S6 = 4u4 and S10 = l lu7. Generalize these formulas. 

Solut ion by Douglas L ind , Universi ty of V i r g i n i a , Char lo t tesv i l le , V a . 

The p r o b l e m should r e a d S6 = 4u5. The fac t that 

4k-2 

/ J
 u i = L2k-iu2k+i 

i=i 

where L is the n Lucas number, appears in the solution of Problem 4272, 
American Math, Monthly, Vol. 56 (1949), p. 421. 

Also solved by W i l l i a m C . Lombard, F. D. Parker, C . B. A . Peck, A . G . Shannon, 

M . N . S. Swamy, Charles R. W a l l , David Z e i t l i n , and the proposer. 

SECOND-ORDER D I F F E R E N C E E Q U A T I O N 

B-109 Proposed by V . E. Hoggatt , J r . , San Jose State Co l lege , San Jose, C a l i f . 

Let r and s be the roots of the quadratic equation x2 - px - q •= 0, 
(r ^ s). Let U = (r - s )/(r - s) and V = r + s . Show that 
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V = U ,4 + qU 
n n+i H n - i 

Solut ion by Charles W . Tr igg, San Diego, C a l i f o r n i a . 

so 

-rs, 

V i + q U n - i = ^ + 1 " s I 1 + 1 ) / ( r - s) + (-rsXr1 1"1 - s n ~ V ( r - s) 

= [ r (r - s) + s (r - s ) ] / ( r - s) 

= V . 

Also solved by Harold Don A l l e n , J . H . Biggs, Douglas L ind, W i l l i am C . 

Lombard, F. D. Parker, C . B. A . Peck, M . N . S. Swamy, Charles R. W a l l , 

John Wessner, David Z e i t l i n , and the proposer. 

AN INFINITE SERIES EQUALITY 

B-110 Proposed by L. Ca r l i t z , Duke Univers i ty , Durham, N . Caro l i na . 

Show that 

00 
n 

(-1) 

n=o n=o 

Solution by the proposer. 

F n = oc - p 5 L n = a n + / 3 n , a = 4 ( 1 + V 5 ) S 0 = f ( l - VH") 

Then 
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00 

n=o n=o 

oo 

" l + a ~ 2 ( 2 n + 1 ) 
a-p)^-1— 

n=o 

00 00 
-(2r+i)(2n+i) = (a-i3)y^y^(-i)r^ 

n=o r=o 

w^m r -

-2(2r+i) 
r=(f 

( g -^£^"- ) r
t t ^ r=0 

r 

r=o 

oo 
r 

2^+i + R2T+1 

^L^^r-f 2r+i 

ANOTHER SERIES EQUALITY 

-111 Proposed by L. C a r l i t z , Duke Univers i ty , Durham, N o . Caro l ina . 

Show that 

°° n oo 

n=o ^JSp 

Solut ion by the proposer. 
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00 00 

F2(2n+i) H f / ^ a 2 ( 2 n + 1 ) H 2 ( 2 n + i ) 
n=o n=o • ' p 

= (a-/nV-^ JL 
Z^a 2 * 2 n + 1 ) i . a"4(2n+1) n=o 

00 00 

2(2r+i)(2n+l) a^)y^(-l)ny^a" ( 
n=o "r^o 

0 0 -2(2r+i) E - ^ r - n 

1 + a 4 
_ -4(2r+i) 

r=o 

CO 

( 
r^o ^ 

00 

Z - ^ i L 2(2r+i) 
r=o 

• • * • * 
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address, he will not receive it. (This will usually cost about 30 cents for first-
class postage.) If possible, please notify us AT LEAST THREE WEEKS PRIOR 
to publication dates: February 15, April 15, October 15, and December 15. 


