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Probably many of us who have an interest in Fibonacci series have 
plotted F as a function of n on graph paper* If we connect the points with 
straight line segments on cartesian coordinate papers we achieve a contin-
uous piecewise linear Fibonacci Function (see Fig» 1). 
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Fig* 1 The Fibonacci Function 

This Fibonacci Function has many interesting properties other than at 
the integral values of the n. In fact, this function gives r ise to the concept of 
F , where x is any real number. 

If we tabulate the function5 it becomes easier to discern the relation-
ships involved,, 

PARTIAL TABLE OF THE FIBONACCI FUNCTION 
F Versus x (tenths) 
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(Example: F6o3 = 9.5) 
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One immediately notes that between x = 0 and x = 1, F = x. B e -
cause of this, it is convenient to set 

x = n + r , 

where n is an integer and r is the balance less than unity. Thus: 

F = r r 

i+r 
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F , = n+r 
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F + F 4r n n-i 

F = F + F r x n n-i 

One may also observe in any column in the table, that any particular 
entry is the sum of the preceding two entries, i. e . , 

F = F +F 
X+l X X-l 

Other interesting properties that are obvious by inspection include: 

2 F , = F . 
n+o. 5 n+2 

„ .p T where L is the Lucas number. 
n+o. 333 n+i ' 

Not so obvious is the fact that there are relationships between the squares 
and the products of the entries in any column of the table. In fact 

F 2 = T(F )(F ^ ) - l l + r2 + r x |_v x - r v x+r J 

and when r is the golden ratio (0.618034) 
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F2 IA = (F )(F ,_ ) x golden v x-i ' x x+i; 

The proof is left to the reader. 
Note also that this function allows any Fibonacci-type sequence to be 

normalized into the r, 1, 1 + r form* For example, a 2, 10, 12, 22- •• 
sequence converts to a 0. 2, 1 • • * general type sequence by dividing by 10. 

CONCLUSION 

In general, this particular method of expressing the Fibonacci Function 
has the potential of being a rich area of Fibonacci discovery. Possibilities 
include verification and reformulation of all Fibonacci formulae,, Also an in-
verse table of F f s versus all the real numbers maybe formed and investigated* 

Because this function represents the normalization of all Fibonacci-type 
sequences, any results should demonstrate broad fulfillment of the goals of 
the investigator. 
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