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1. INTRODUCTION 

We shall devote this part of the primer to the topic of generating func-
tions. These play an important role both in the general theory of recurring 
sequences and in combinatorial analysis. They provide a tool with which every 
Fibonacci enthusiast should be familiar. 

2. GENERAL THEORY OF GENERATING FUNCTIONS 

Let a09 al9 a2s • • * be a sequence of real numbers. The ordinary gen-
erating function of the sequence ja J is the series 

A(x) = a0 + &tx + a2x2 + ••• = / . a
n

x -
n=o 

Another type of generating function of great use in combinatorial problems 
involving permutations is the exponential generating function of i a i, namely 

E(x) =. a0 + ajx/ll + a2x2/2l + . . . = V \ x11/n! . 
n=o 

For some examples of the two types of generating functions, first let 
a = a . The ordinary generating function of j a 1 is then the geometric 
series 

(2.1) A(x) = ^ L _ = £ a V , 
n=o 

4 4 5 
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while the exponential generating function is 

E(x) = e a x = ^ a n x n / n j 

n=o 

Similarly, if a = na , then 

00 

A / x ax \~"> n n 
A(x) = — ^ = y na x , 

(1 - ax)2 ^—' 

, s ax V~^ n n / , 
(x) = axe = y na x /n; , 

n=o 
(2.2) 

n=o 

each of these being obtained from the preceding one of the same type by differ-
entiation and multiplication by x. A good exercise for the reader to check his 
understanding is to verify that if a = n2 , then 

00 

A(x) = xfx±n = y n2xn s 
(1 - x)3 ^ n=o 

E(x) = x(x + l)eX = / _ n 2 x /nj 

n=o 

(Hint; Differentiate the previous results again.) 
For the rest of the time, however, we will deal exclusively with ordinary 

generating functions, 
We adopt the point of view here that x is an indeterminant, a means of 

distinguishing the elements of the sequence through its powers. Used in this 
context, the generating function becomes a tool in an algebra of these sequences 
(see [3]). Then formal operations, such as addition, multiplication, differen-
tiation with respect to x, and so forth, and equating equations of like powers 
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of x after these operations merely express relations in this algebra^ so that 
convergence of the series is irrelevant 

The basic rules of manipulation in this algebra are analogous to those 
for handling polynomia l If | a i, Jb L and |c } are real sequences with 
(ordinary) generating functions A(x), B(x), C(x) respectively^ then A(x) + 
B(x) = C(x) if and only if a + b = c , and A(x)B(x) = C(x) if and only if 

c
n
 = anbo + an~ibi + • • • + ajbn-i + a0bn . 

Both results are obtained by expanding the indicated sum or product of gener-
ating functions and comparing coefficients of like powers of x* The product 
here is called the Cauchy product of the sequences ja I and J b k and the 
sequence ic i is called the convolution of the two sequences ja | and j b L 

To give an example of the usefulness and convenience of generating func-
tions^ we shall derive a well-known but nontrivial binomial identity. Firs t note 
that for a fixed real number k the generating function for the sequence 

\ I n/ k(k - 1). - • (k - n + 1) 

i s 

Ak(x) = (1 + x)k 

by the binomial theorem. If k is a nonnegative Integer, the generating func-
tion is finite since 

(2.3) 

by definition Then 

| k ] = 0 If n 7 k > 0 or n < 0 

Ak(x) = (1 + x)k = (1 + x)k m ( l + x ) m = A^ m (x)A m (x) 

Using the product rule gives 



448- A PRIMER FOR THE FIBONACCI NUMBERS 

n=o x ' n=o x ' \n=o x / \ n = o / 

[Dec. 

so that equating coefficients of x shows 

(») -tfrX-"') 
This can be found in Chapter 1 of [ 8]. 

If the generating function for j a \ is known, it is sometimes desirable 
to convert it to the generating function for j a , I as follows. If 

A(x) = ^ a
n

x I 1 » 
n=o 

then 

A(x) - a0 £v/ 
n=o 

This can be repeated as often as needed to obtain the generating function for 

Generating functions are a powerful tool in the theory of linear recurring 
sequences and the solution of linear difference equations. As an example, we 
shall solve completely a second-order linear difference equation using the tech-
nique of generating functions. Let j c I be a sequence of real numbers which 
obey 
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n+2 ^ n+i ;
H n $ ~ 9 

where c0 and c1 are arbitrary,, Then by using the Cauchy product we find 

(1 - px + qx2) V^ c x = c0 + (Cj - pc0)x + 0 • x2 + 
n=o 

= c0 + (Ci - pc0)x = r(x) , 

so that 

( 2 e 4 ) x , ^ = r{*L r n e x = — n x px + qx^ n=0 ^ H 

Suppose a and b are the roots of the auxiliary polynomial x2 - px + qs so 
the denominator of the generating function factors as (1 - ax) (1 - bx). We 
divide the treatment into two cases, namely, a ^ b and a = b. 

If a and b are distinct (i. e a , p2 - 4q ^ 0), we may split the generat-
ing function into partial functions, giving 

(2>5) EM = r ^ = _A_+ _A_ 
1 -• px + qx2 (1 - ax)(l - bx) 1 - ax 1 - bx 

for some constants A and B. Then using (2.1) we find 

OO uu LKJ uu 

Ev11 = A E a V + B Z b V = E(Aa11 + BhU)xn • 
n=o n=o n=o n=o 

so that an explicit formula for c is 

(2.6) c = Aa11 + Bbn 

\ n 
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Here A and B can be determined from the Initial conditions resulting from 
assigning values to c0 and clB 

On the other hand, if the roots are equal (i. e . , p2 - 4q = 0), the situa-
tion is somewhat different because the partial fraction expansion (2.5) is not 
valid. Letting r(x) = r + sx, we may use (2.2), however, to find 

00 00 
n r + sx „ x T~^ /> , ^ n n E n r -i- sx , x ^-^ , , _ n ] 

c x = _ _ = ( r + sx) \ (n + l)a x 
n (1 - ax)2 ^ 

n=o v ; n=o 00 00 

E t t , i\ n , n-iv n v ^ „ , / x , x n n 

(r(n + l)a + sna )x = > ((r + s/a)n + r)a x , 
n=o n=o 

showing that 

c n = (An + B)an , 

where 

A = r + s/a, B = r 

are constants which again can be determined from the initial values c0 and clo 

This technique can be easily extended to recurring sequences of higher 
order. For further developments, the reader is referred to Jeske f6 l , where 
a generalized version of the above is derived in another way. For a discussion 
of the general theory of generating functions, see Chapter 2 of £8] and Chap-
ter 3 of [ 2 ] . 

3. APPLICATIONS TO FIBONACCI NUMBERS 

The Fibonacci numbers F are defined by F0 = 0, Fj = l , and Fn-f.2 

- F - F = 0 , n > 0. Using the general solution of the second-order dif-
ference equation given above, where p = I, q = - I , r(x) = x, we find that 
the generating function for the Fibonacci numbers is 
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60 

(3.1) F(x) = — X
 = \>^x

n
 o 

1 - X - X2 £mmJ 

The r e a d e r should actual ly divide out the middle p a r t of (3.1) by long division 

to s ee that Fibonacci number s rea l ly do appear as coefficients. 

Since the roo ts a = (1 + V 5 ) / 2 and P = (1 - V 5 ) / 2 of the auxi l iary 

polynomial x2 - x - 1 a r e d i s t i n c t we see from (2.6) that 

(3.2) F , = Ac/1 + B/3n . 
n ^ 

Putt ing n = 0 ,1 and solving the resu l t ing sys tem of equations shows that 

A = l / \ / 5 = l/(a ~ p), B = - l / \ / 5 , 

es tabl ishing the fami l ia r Binet forms 

n 0 n 
(3,3) Fn = °-^L-

• n a - p 

We shal l now turn around and u s e this form to de r ive the or iginal generat ing 

function (3.1) by using a technique f i rs t exploited by BL W. Gould [ s j 0 Suppose 

that some sequence | a I has the generat ing function 

AW =Y,v • 
n=o 

Then 

oo 
A (ax) - A(Px) 

<3'4> — ^ J 3 
n=o f n=o 

In par t icular* if a = 1, then A(x) = 1/(1 - x), so that 
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Ft*) = - L ( : i_ . _ i _ \ = x 
r w or - j8-l 1 - ax 1 - PxJ 1 - x -

[Dec . 

X2 

Next we use (3,1) to prove that the Fibonacci numbers a r e the sums of 

t e r m s along the r i s ing diagonals of P a s c a l ' s Tr iang le . We w r i t e 

oo 

E 
n=o 

n 1 - X - X2 1 - (x + X2 ) •E= 
n=o 

x > x n ( l + x ) n 

oo n 0 0 _ 11 , L / V OO 11 / v 

E^Efê -EE® 
n+k+i 

n=0 k=o 

Rm- i ) /2 ] 

n=o k=o 

oo U*i-1)/2J / \ 

-ELE -v1 ' m=i j=o 

w h e r e [ m ] denotes the g rea t e s t in teger contained in m. The inner sum is 

the sum of coefficients of x in the preceding sum, and the upper l imi t of 

summat ion is de termined by the inequality m - j - 1 < j s reca l l ing (2.3). The 

r e a d e r is urged to c a r r y through the deta i ls of this typical generat ing function 

calculat ion. Equating coefficients x shows that 

(3.5) F = n 

[ (n- l ) / 

j=o -I-) 
linking the Fibonacci number s to the binomial coefficients. 

It follows from (3„1) upon division by x that 

(3.6) G(x) 
1 - X - X̂  

oo 

E 
n=o 

F _!_.,' X 

n+i 

Differentiating this yields 
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x + 1 . _ / 1 W l + 2x \ = V ^ ( 

x - x 2 ) 2 \ l - x - x 2 / \ l - x - x 2 / ^ n *»- ^^^ -ir-Hiu^h) ->>»'«•"• 
Now 

oo 
1 + 2x X \ n 

2 Z^J n+i 1 - X - X' - A 

n=o 

where the L are the Lucas numbers defined by Li = 19 n J L > 

Li = 1, L2 = 3, L ^ = L ,, + L , n > 0. l L n + 2 n+i n
3 

Hence 

oo \ / oo \ oo / n 

n=o / \ n=o / n=o \k=o 
G'(x) =j > F _ x " | j > L ^ x " ! = ? I 7 . F - . k + 1

L
k + 1 l x I 1 

so that 

n 

XX-kA+i = <n + 1 ) F n + 2 > 
k=o 

a convolution of the Fibonacci and Lucas sequences* 
We leave it to the reader to verify that 

(1 - x)(l - x - x2) . - _ . ^ - ^ ——=y 
1 - 2X + X3 AmmJ 

( Fn+ 2 " ^ 

Also 
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(1 - x)(l - x - x2) 1 - x 1 - x - x2 I L-i 1\L*J n i 
\ n=o J \ n=o 

oo I / n 
n HE F . l x 

n=o \ j=o 

Equating coefficients shows 

n 

j=0 , 

which Is really the convolution of the Fibonacci sequence with the constant 
sequence 11, 1, 1, • * - \ . 

Consider the sequence | F , |°° , where k f 0 is an arbitrary but fixed 
integer. Since 

kn 0kn 
F = •£ — £ -

kn n 
a - j8 

we have 

/ 00 CO 

F x̂* = _i__( V«lmxn - W ^ V 
n=o \ n=0 n=0 

= 1 / 1 _ 1 \ = 1 / (ak-Pk)x 
( 3 ' 7 ) « - / 3 \ l - A " 1 -BkxJ a - 4 l - ( « k + / S k ) x + ( A k ) x 2 i 

F k X 

1 - Lkx + (-l)kx2 

where we have used aB = -1 and the Binet form L = a + /3 for the Lucas 
r n 

numbers. Incidentally, since here the integer in the numerator must divide 
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all coefficients in the expansion* we have a quick proof that F, divides F , 
k nk 

for all n, A generalization of (3.7) is given in equation (4.18) of Section 4, 
We turn to generating functions for powers of the Fibonacci numbers. 

First we expand 

a - £ / (a - j3)2 

Then 

00 / OO 00 00 \ 

( " - ^ \ n = o 

(a? - j3)2\ 1 - a2x 1 - aj3x 1 - j32x 

This also shows that 

(1 - a2x)(l - arjSxHl - j32x) 1 - 2x - 2x2 + x3 

<F2 > obeys 

F2 2 F 2 - 2F2 + F2 = 0 . 
n+3 n+2 n-M n 

We r e m a r k that Gouldf s technique (3a3) may be applied to Ffx)s and leads to 
exactly the same result* 

]n general9 to find the generating function for the p power of the Fib-
onacci numbers, first expand F p by the binomial theorem. This gives F p 

as a linear combination of a , a ^~ £' , a • • , a p p~ , /3 p so that as 
above the generating function will have the denominator 

(1 - cPx)(l - Q P ' W ' " (1 - o ^ x M l - j3Px) . 

Fortunately, this product can be expressed in a better way. Define the Fib-
fkl onomial coefficients I „ I by 
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F, F F k - r+ i 
F i F 2 

(r > 0); = 1 

[ D e c . 

Then it has been shown [ ? ] that 

P P+i 
Qp(x) = O (1 - a ^ V x ) = V ( - l ) J 0 + 1 ) / 2 r p J" ! p . 

F o r example, 

Qi(x) 

Q2(x) 

Qs(x) 

Q4(x) 

1 - X - X^ 

-1 - 2x - 2x2 + x3 

1 - 3x - 6x2 + 3x3 + x4 

1 - 5x - 15x + 15x3 + 5x4 

Since any sequence obeying the Fibonacci r e c u r r e n c e re la t ion can be wr i t ten in 

the form Aa + Bj3 , Q (x) i s the denominator of the generat ing function of 
th P 

the p power of any such sequence* The n u m e r a t o r s of the genera t ing func-

t ions can be found by s imply multiplying through Q (x). F o r example , to find 
the genera t ing function of 

{Fn+2}' 
we have 

F* x n = r(x) 

n=o 2x 2x<* + x6 

Then r(x) can be found by multiplying Q2(x), giving 

:(x) = (1 - 2x - 2x2 + z?)(l + 4x + 9x2 + 25X4 + • • • ) 

= 1 + 2x - x2 + 0 • x3 + - • • = 1 + 2x - x2 . 

Th is i s (4.7) of Section 4. However, for fixed p , once we have obtained the 

generat ing functions for {^H, {F^ I »B" * »{ Fn+p}» t h e o n e f o r { F n+kf f o l ~ 

lows d i rec t ly f rom the identity of Hoggatt and Lind [ 4 ] 
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(3,5) FP+k
 = ^ 1 ) ( P " J ) ( P " J + 3 ) / 2 [ j l [fl ( T ^ ) 

j=0 L J I J \ k-j / 
F P 

"n+j 

where we use the convention F0 / F 0 = 1. For example9 for p = 1 this gives 

F _u = F. F ^ + F. F n+k k n+i k-l n 

Using the generating function for i F > in (3.4) and <JF 1 in (3.1), we get 

00 00 00 

n=o n=o n=o 

F. + F . x k k-l 
1 - x - x2 

In facts one of the main purposes for deriving (3„5) was to express the generat-
ing function of <FP , / as a linear combination of those of \ F P k • • • , s F p

+ >0 

Alternatively 5 to obtain the generating function of < F p
+ , l from that of 

<F^?, we could apply k times in succession the technique mentioned in Sec-
tion 2 of finding the generating function of j a I from that of ja I, 

The generating function of powers of the Fibonacci numbers have been 
investigated by several authors (see [3JS L5j, and [7])* 

4. SOME STANDARD GENERATING FUNCTIONS 

We list here for reference some of the generating functions we have 
already derived along with others which can be established in the same way. 

(4.1) — 2 = > F x11 

1 „ x - x2 Z - f n 

n=o 
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(4.2) 

(4.5) 

00 

_ , = x p x 

.1 - x - x* Z ^ n+1 

n=o. 

(4.3) £ J 1 x _ = V L xn £• 1 - X - X2 JL—i n 

n=o 

(4.4) • 1 + 2 X =VL , xn 

1 - X - X 
n=o 

•S-2 x ^ n+i ' 

1 - 2x - 2x2 + x3 

n=o 

= V F ^ X 1 1 

+ X3 Z ^ n 

(4.6) L ^ 5 = > F
2 x11 

1 - 2x - 2x2 + x3 ^ - f n + 1 
n=0 

' 00 

oo 
(4.7) 1 + 2X-X* = y F , n 

1 - 2x - 2x2 + x3 £—i n + 2 

n=o 

00 

(4.8) — £ = \ F F A x11 

1 - 2x - 2x2 + X3 Z ^ n n + i 
n=o 

(4.9) 4 - 7x - x = V L 2 *n 

1 - 2x - 2x2 + x3 *—i n 
n=0 

(4.10) l + 7 x - 4 x 2
 = \ ^ L 2 n 

1 - 2x - 2x2 + x3 £-J n + 1 

n=o 
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oo 
(4.11) 9 - 2x - x2 _ = \ \2 x n 

1 - 2x - 2x2 + x3 

n=o 
n+2 ' 

oo 
(4,12) x - 2 x j ^ £ = y ^ F 3 x n 

1 - 3x - 6x2 + 3x3 + x4 Z » i n 

n=o 

DO 

(4.13) — I - " 2X - X l — = V V , xn 
1 _ 3x - 6x2 + 3x3 + x4 *-J n 

oc 
1 + -5x - 3x2 - x3 _ir™^ n (4.14) ± i- -ox - ox-..- x- ^ ^ " ^ _̂ 3 ^ 

q 4 y ^ n+2 1 - 3x - 6x2 + 3x3 + x' 

(4.i5) 8 + 3 x - 4 x 2 - x 3 = y v + 3 x » 
1 - 3x - 6x2 + 3x3 + x4 X—f̂  n d 

n=o 

(4.16) 2 x - — = > F F F x
n 

v # n n+l n+2 

00 

n=o 

1 - L.x + (-l)kx2 2-d k n ' X 
k n=o 

F r + ^^X rx \ ^ 
(4.18) — I £ £ _ = X F x n 

1 - L, x + (-l)kx2 Z ^ k n + r 

k n=o 
Many thanks to Kathleen belaud and Allan Scott. 
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