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In Advanced Problem H-70 (this Quarterly, Vol, 3, No, 4, p. 299),
C, A, Church, Jr, proposed the following combinatorial result:

"For n = 2m, show that the total number of k-combinations of the
first n natural numbers such that no two elements i and i + 2 appear
together in the same selection is Fzm and if n = 2m + 1, the total is
F th g " (Solution appears in [1].)

The purpose of this note isto consider bya different methoda more gen-

+2

eral combinatorial problem which includes Church's problem as a special case,
As in the latter problem, the explicit solution will he seen to be expressible
entirely in ferms of Fibonacci numbers,

PROBLEM: Given the set S congisting of the first n positive integers
and a fixed integer v satisfying 0 < v =n, how many different subsets A
of S (including the empty subset) can be formed with the property that a' - a"
# v for any two elements a', a" of A (thatis, subsets A such that integers
i and i+ v do not both appear in A forany i = 1,2,°0,n ~-v)?

Church's problem isthen recovered from the above formulation on taking
v =2, »

For the solution of the general problem, we let n = m +r with m an
integer and 0 = r = p, sothat n = r (mod 1), Each subset A of S canbe
madeto correspond to an ordered binary sequence of n terms, (aj,ag,cc° ,an),
by the rule that a, =1 if i€ A and a, =0 if i& A, For a given subset
A and its corresponding binary sequence (o, &y, ,an), we define v ordered

binary sequences Ay, Aj,ec+,A, as follows: For 1= j=r,

A‘] = (aJS aj+vs aj,,?V,

)
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Ty tmy

andfor r <j=vw

Ay = 0y oy @t s aaagy)
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Note that each of the terms ay,0,°°° e is included in one and only one of
these sequences, since for j = 1,2,°°°,v -1, the sequence Aj contains all
ai's with i =j (modw) while A, contains all ai's with i = 0 (mod »),

Now if the subset A under consideration satisfies the problem constraint,

Y can contain two consecutive ones;

then clearly none of the sequences {Aj}
conversely, if A contains both i and i+ v for some i, satisfying 1 < i
= n - v, then the sequence Ak’ where k =iy, (mod v) will contain two suc-
cessive ones, Thus the subset A under consideration will satisfy the given
constraint if and only if each A. (j = 1,2,°¢°,») is a binary sequence without
consecutive ones, But it is well known ([2], Problem 1(b), p, 145 [3], pp, 166~
167) that the total number of binary sequences of leng’ch 't without consecutive

ones is F

o° Since each of the r sequences Ay, Ag,°c° ’Ar has length m +

1 and each of the remaining v - r sequences Ar+1’ cee, A, haslength m, it
follows that the total number of subsets of A with the desired property is
r v-r
Fm+3 Fm-’*z

To obtain Church's result, we take v = 2 and let n = 2m + r where
r=0 or r =1, sothat n = r (mod 2), Thenthe total number ofk-combina-
tions of the first n integers such that no elements i and i + 2 appear together
is

anﬂ F";m_z = Fim if =0 (neven)
and

Fm+3 me“z if r=1 (modd.

Additional references dealing with the case ¥ = 2 may be found in [ 1],
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EDITORIAL NOTE: The restraint that 0 =v.=. n can be removed, Set m =

0, so that number of subsets becomes F. F' ' = F3Fy '=2" asis well
m+3 m+2

known forthe numbers of subsets of 1,2,3,.,.,n without constra‘.ints.v V.E.H,
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