RECURRING SEQUENCES— LESSON 1

BROTHER ALFRED BROUSSEAU
St. Mary's College, California

The Fibonacci Quarterly has been publishing an abundance of material
over the past five years dealing in the main with the Fibonacci sequence and
its relatives. Basic fo the entire undertaking is the concept of RECURRING
SEQUENCE. In view of this fact, a series of some eight lessons hasbeen pre-
pared covering this topic. In line with the word "lesson,' examples of princi-
ples will be worked out in the articles and a number of "problems" will be
included for the purpose of providing "exercise' in the material presented.
Answers to theseproblems will be included on another page so thatpeople may
be able to check their work against them.

In this first lesson, the idea of sequence and recursion relation will be
considered in a general way. A sequence is an ordered set of quantities. The
sequence is finite if the set of quantitiesterminates; it is infinite if it does not.

The prototype of all sequences is the sequence of positive integers: 1,2, 3,4,

5,++-. Other sequences, some quite familiar, are the following:
1, 3, 5, 7,9, 11, 13, ="
2, 4, 6, 8, 10, 12, 14, 16, ---
1, 2, 4, 8, 16, 32, 64, -
2, 6, 18, 54, 162, 486, ***
1, 2, 6, 24, 120, 720, 5040, 40320, -
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, -
1, 4, 9, 16, 25, 36, 49, 64, -
1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, -

For convenience of reference, the terms of sequences can be identified
by the following notation: ay, aj, as, a4, as ***, ag, *°°« One of the commor
ways of providing a compact representation of a sequence is to specify a for-
mula for the nth term. For the positive integers, a, = n for the odd inte-
gers 1, 3, 5, 7, ==+, a, = 2n -~ 1; for the even integers 2, 4, 6, 8, »--
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a = 2n. The nth terms of the remaining sequences given above are listed
herewith.
1,2, 4, 8, 16, 82, *++, a_= 2"
2, 6, 18, 54, 162, 486, -, a, = 23
1, 2, 6, 24, 120, -+, a, = n!
1, 3, 6, 10, 15, 21, 28, =++, a_ = n +1)/2
1, 4, 9, 16, 25, 36, ---, a = n’
1, 1/2, 1/3, 1/4, **-, a = 1/n .

There is, however, a second way of specifying sequences and that is the
recursion approach. The word recursion derives from recur and indicates
that something is happening over and over. When in a sequence, there is an
operation which enables us to find a subsequent term by using previous terms
according to some well-defined method, we have what can be termed a recur-
sion sequence. Again, the prototype is the sequence of positive integers which
is completely specified by giving the first term a; = 1 and stating the recur-
sion relation

4y T Ay +1 .
This is the general pattern for a recursion sequence; one or more initial terms
must be specified; then an operation (or operations) is set down which enables
one to generate any other term of the sequence.

Going once more to some of our previous sequences, the recursion rep-

resentations are as follows:

1, 3, 5, 7, v¢+, a3y = 1; n+1=an+2'
2, 4, 6, 8, ***, ay = 2; an+1=an+2.
1, 2, 4, 8, 16, ***, a1 = 1; Ay T 2an .

2, 6, 18, 54, 162, ,a4 = 2; a4y T 3an.

1, 2, 6, 24, 120, ***,a;=1; an+1=(n+1)an.

Is it possible in allinstances to give this dualinterpretation to a sequence,

that is, to specify the nth term on the one hand and to provide a recursion
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definition of the sequence on the other? Is it not wise to say in an absolute
manner what is possible or impossible in mathematics. But at least it can be
stated that sequences which are readily representable by their nﬁEl term may
be difficult to represent by recursion and on the contrary, seq.uences which
can be easily represented by recursion may not have an obvious nth term.

For example, what is the recursion relation for the sequence defined by:

Or on the other hand, if a; = 2, a; = 3, ag =5, and

n+i a

what is the expression for the nth term?

However, in most of the usual cases, it is possible to have both the nth
term and the recursion formulation of a sequence. Many of the common se-
quences, for example, have their nth term expressed as a polynomial in n.
In such a case, it is possible to find a corresponding recursion relation. In
fact, for all polynomials of a given degree, there is just one recursion rela-
tion corresponding to them, apart from the initial values that are given. Let
us examine this important case.

Our discussion will be based on what are known as finite differences.

Given a polynomial in n, such as f(n) = n? +3n -1, we define
Af(n) = f(n +1) - £(n)
(Read "the first difference of f(n)!" for Af(n).) Letus carryout this operation.

Afn) = m+1)2+3m+1)-1- (@%+3n-1)

Afn) = 2n + 4 .
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Note that the degree of Af(n) is one less than the degree of the original poly-
nomial. If we take the difference of Af(n) we obtain the second difference of
f(n). Thus

A@) = 2@+ 1) +4- 2n+4) = 2

Finally, the third difference of fn) is A% () = 2 - 2 = 0. The situation por-
trayed here is general. A polynomial of degree m has a first difference of
degree m - 1, a second difference of degree m - 2,+++, an mth difference
which is constant and an (m + 1)St difference which is zero. Basically, this
result depends on the lead term of highest degree. We needonly consider then

what happens to f(n) = n™ when we take a first difference.

Afn) = (+ 1)m - = nm + mnm—1 oee _nm

Af(n) = mn™ ™+ .o+ terms of lower degree, Thus the degree drops by

1.
Suppose we designate the terms of our sequence as Tn. Then
ATn = Tor ~ Th
2 =T _ _ ~ = _ .
A Tn Tn+2 Tn+1 (Tn+1 Tn) Tn+2 2Tn+1 Tn
3 - m _ _ _ 4
a Tn rI1r1+3 2Tn+z i Tn+1 (Tn+2 2Tn+1 Tn)
or
3 = ' - -
ATn Tn+3 ?,TmJr2 + 3Tn+1 Trl .

Clearly the coefficients of the Pascal triangle with alternating signs are being
generated and it is clear from the operation that this will continue.
We are now ready to transform a sequence with a term expressed as a

polynomial in n into a recursion relation. Consider again:

T =n‘+3n-1,
n
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Take the third difference of both sides. Then
ASTn = A%(n%+3n-1)
But the third difference of a polynomial of the second degree is zero. Hence

- -+ - =
Tn+3 3Tn+2 3Tn+1 Tn 0

or

Tpeg = 3Tpay = 3Ty T Ty
is the required recursion relation for all sequences whose term can be ex-
pressed as a polynomial of the second degree in n.
An interesting particular case is the arithmetic progression whose nth

term is
Tn =a+@m-1d,

where a is the first term and d the common difference. For example, if

a is 5 and d is 4,

T, = 5+4@-1) = 4n-1.

In any event, an arithmetic progression has a term which can be expressed as
a polynomial of the first degree in n. Accordingly the recursion relation for

all arithmetic progression is:

or

= 2T -T .
Tn+2 n+i n

The recursion relation for the geometric progression with ratio r is

evidently
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Tn+1 = rTn .

For example, 2, 18, 54, 162, «++ is specified by a; = 2, Tn+1 = 3Tn.
This takes care of our listed sequences except the factorial and the re-

ciprocal of n. For the factorial:

Tn+1 = (n+ 1)Tn .

However, we do not have a pure recursion relation to a subsequent from pre-
vious terms of the sequence. We need to eliminate n in the coefficient to

bring this about. Now

n=T /T

n'’ n-1
and
n+1 = Tn+1/Tn .
Thus
Tn+1 /Tn - Tn /Tn—i =1
so that
Tn+1 - Tn (Tn * Tn—i) / Tn—1 *

Again for T = 1/n, we have

n = 1/Tn, n+1l = l/Tn+1’ 1/T l—l/Tn=1

nt+

so that

Tn+1 = Tn/(1+Tn) .
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8.

9.

10.

PROBLEMS

Find the nth term and the recursion relation for the sequence: 2, 6, 12,
20, 30, 42, 56, °°* ,

Find the nth term and the recursion relation for the sequence: 1, 4, 7,
10, 13, 16, °*° ,

Determine the nth term and the recursion relation for the sequence: 1,
8, 27, 64, 125, 216, 343, **° ,

For T; =1, Ty =3 and Tow = T /Tn_1

the nth term. (It may be more convenient to do this using a number of

, finda form of expression for

formulas. )
Find the recursion relation for the sequence with the term Tn =v/n.
What is the recursion relation for a sequence whose term is a cubic poly-
nomial in n?

If a is a positive constant, determine the recursion relation for the
sequence with the term T][1 = 3",

Find a recursion relation corresponding to T = TIl +2n + 1 which does

notinvolve n except in the subscripts nor a corrl;;itant exceptas a coefficient.
Find an expression(s) for the n? term of the sequence

the recursion relation T T ., =1, where T; =a (a not zero).

For the sequence with.term Tn = n/(n + 1), find a recursion relation with

n occurring only in subscripts.

See page 260 for answers to problems.
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