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The Fibonacci Qua r t e r ly ha s been publishing an abundance of m a t e r i a l 

over the pas t five y e a r s dealing in the main with the Fibonacci sequence and 

i t s r e l a t ives . Basic to the en t i re undertaking i s the concept of RECURRING 

SEQUENCE. In view of this fact, a s e r i e s of some eight l e s sons has been p r e -

pa red covering this topic. In line with the word "lesson, r f examples of p r i n c i -

p les will be worked out in the a r t i c l e s and a number of " p r o b l e m s " will be 

included for the purpose of providing " e x e r c i s e " in the m a t e r i a l p resen ted . 

Answers to these p rob l ems will be included on another page so that people may 

be able to check the i r work agains t them. 

In this f i r s t lesson, the idea of sequence and r ecu r s ion re la t ion will be 

cons idered in a genera l way. A sequence is an o rde red se t of quant i t ies . The 

sequence is finite if the set of quanti t ies t e rmina tes ; it i s infinite if it does not. 

The prototype of al l sequences is the sequence of posi t ive in t ege r s : 1, 2, 3 ,4 , 

5, • • • . Other sequences , some quite fami l ia r , a r e the following: 

1, 3, 5, 7, 9, 11, 13, •"• 

2, 4, 6, 8, 10, 12, 14, 16, ••• 

1, 2, 4, 8, 16, 32, 64, 

2, 6, 18, 54, 162, 486, • •• 

1, 2, 6, 24, 120, 720, 5040, 40320, ••• 

1, 3, 6, 10, 15, 21 , 28, 36, 45, 55, ••• 

1, 4, 9, 16, 25, 36, 49, 64, • • • . 

1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, ••• 

F o r convenience of re fe rence , the t e r m s of sequences can be identified 

by the following notation: a1? a2, a35 a4? a55
 0 9 o

? a n , ° • * * One of the C0JH1HOF 

ways of providing a compact r ep resen ta t ion of a sequence is to specify a fo r -

mula for the n t e r m . F o r the posi t ive i n t ege r s , a = n; for the odd i n t e -

g e r s 1, 3, 58 7, • • ' , a = • 2n - 1; for the even in tegers 2, 4, 6, 8, • • • 
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a = 2n<, The n t e r m s of the remaining sequences given above a r e l i s ted 

herewith . 

1, 2, 4, 8, 16, 32, • • • , a = 2 n ~ 1 

n 
2, 6, 18, 54, 162, 486, • • • , a = 2 • 3 n ~ 

1, 2, 6, 24, 120, • • • , a = n! 

1, 3, 6, 10, 15, 21 , 28, • • • , a = n(n + l ) / 2 

1, 4, 9, 16, 25, 36, • •• , a = n2 

1, 1/2, 1/3, 1/4, • • • , a n = 1/n . 

T h e r e i s , however., a second way of specifying sequences and that i s the 

r ecu r s ion approach. The word r e c u r s i o n de r ives from r e c u r and indicates 

that something i s happening over and over . When in a sequence, there is an 

operat ion which enables us to find a subsequent t e r m by using previous t e r m s 

according to some well-defined method, we have what can be t e rmed a r e c u r -

sion sequence. Again, the prototype i s the sequence of posi t ive in tegers which 

i s completely specified by giving the f i r s t t e r m a^ = 1 and s ta t ing the r e c u r -

sion re la t ion 

a , J = a + 1 . n+i n 

This is the genera l pa t te rn for a r ecu r s ion sequence; one o r m o r e init ial t e r m s 

mus t be specified; then an operat ion (or operat ions) i s se t down which enables 

one to genera te any o ther t e r m of the sequence. 

Going once m o r e to some of our previous sequences , the r ecu r s ion r e p -

resen ta t ions a r e as follows: 

1, 3, 5, 7, • •• , ai = 1; a _, = a + 2 . 
1 n+i n 

2, 4, 6, 8, • • • , a4 = 2 ; a ^ ~ a + 2 . 
1 n+i n 

1, 2, 4, 8, 16, • • • , at = 1; a ^ = 2 a . 
1 n+i n 

2, 6, 18, 54, 1 6 2 , - • • , ai = 2; a ± = 3 a . 
1 n+l n 

1, 2, 6, 24, 120, • • • , ax = 1; a n + 1 = (n + l ) a n . 
Is i t poss ib le in al l ins tances to give this dual in te rpre ta t ion to a sequence, 

that i s , to specify the n t e r m on the one hand and to provide a r e cu r s ion 
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definition of the sequence on the other? Is it not wise to say in an absolute 
manner what is possible or impossible in mathematics. But at least it can be 
stated that sequences which are readily representable by their n term may 
be difficult to represent by recursion and on the contrary, sequences which 
can be easily represented by recursion may not have an obvious n term. 
For example, what is the recursion relation for the sequence defined by: 

Or on the other hand, if a* = 2, a2 = 3, a% = 5, and 

7a + 5a n n-i 
a , = 

n+i a , n 
n-2 

what is the expression for the n term? 
However, in most of the usual cases, it is possible to have both the n 

term and the recursion formulation of a sequence* Many of the common se -
quences, for example, have their n term expressed as a polynomial in n. 
In such a case, it is possible to find a corresponding recursion relation. In 
fact, for all polynomials of a given degree, there is just one recursion rela-
tion corresponding to them, apart from the initial values that are given. Let 
us examine this important case. 

Our discussion will be based on what are known as finite differences. 
Given a polynomial in n, such as f(n) = n2 + 3n - 1, we define 

Af(n) - f(n + 1) - f(n) 

(Read nthe first difference of f(n)n for Af(n).)- Letus carry out this operation. 

Af(n) = (n + l)2 + 3(n + 1) - 1 - (n2 + 3n - 1) 

Af(n) *= 2n + 4 . 
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Note that the degree of Af (n) is one less than the degree of the original poly-
nomial. If we take the difference of Af (n) we obtain the second difference of 
f(n). Thus 

A2f(n) = 2(n + 1) + 4 - (2n + 4) = 2 

Finally, the third difference of f (n) is A3f (n) = 2 - 2 = 0. The situation por-
trayed here is general. A polynomial of degree m has a first difference of 
degree m - 1, a second difference of degree m - 2, • • •, an m difference 

st which is constant and an (m + 1) difference which is zero. Basically, this 
result depends on the lead term of highest degree. We need only consider then 
what happens to f (n) = n when we take a first difference. 

Ai(n) = (n + 1) - n = n + mn • • • -n 

1. 

or 

m—l Af(n) = mn + • •• terms of lower degree. Thus the degree drops by 

Suppose we designate the terms of our sequence as T . Then 

AT = T - T 
n n+i n 

A2T = T' - T ^ - (T , - T ) = T _ L - 2T ^ + T n n+2 n+i n+i n n+2 n+l n 
A3T = T ^ - 2T _, + T - (T ^ - 2T •+ T ) n n+3 n+2 n+i n+2 n+i n 

AdT = T' - 3T _, + 3T _, - T n n+3 n+2 "n+i n 

Clearly the coefficients of the Pascal triangle with alternating signs are being 
generated and it is clear from the operation that this will continue. 

We are now ready to transform a sequence with a term expressed as a 
polynomial in n into a recursion relation. Consider again: 

T = n2 + 3n - 1 n 
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Take the third difference of both sides. Then 

A3T = A3(n2 + 3n - 1) n 

But the third difference of a polynomial of the second degree is zero. Hence 

T - 3 T + 3 T - T = 0 n+3 n+2 n+i n 
or 

T _ L = 3 T _ J _ - 3 T _ J _ + T n+3 n+2 n+i n 

is the required recursion relation for all sequences whose term can be ex-
pressed as a polynomial of the second degree in n. 

An interesting particular case is the arithmetic progression whose n 
term is 

T = a + (n - l)d , n 

where a is the first term and d the common difference. For example, if 
a is 5 and d is 4, 

T n = 5 +4(n - 1) = 4n - 1 . 

In any event, an arithmetic progression has a term which can be expressed as 
a polynomial of the first degree in n. Accordingly the recursion relation for 
all arithmetic progression is : 

A2 T = 0 n 

T ^ = 2T , - T • n+2 R+l n 

The recursion relation for the geometric progression with ratio r is 
evidently 
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T _,_. = rT . n+i n 

For example, 2, 18, 54, 162, ••• is specified by SLt = 2, T + = 3T . 
This takes care of our listed sequences except the factorial and the r e -

ciprocal of n. For the factorial: 

T , = (n + 1)T . n+i n 

However, we do not have a pure recursion relation to a subsequent from pre-
vious terms of the sequence. We need to eliminate n in the coefficient to 
bring this about. Now 

n = T /T 4 
n ' n-i 

and 

n + 1 = T , / T n+i n 

Thus 

T _,_ / T - T / T A = 1 n+i n n n-i 

so that 

T = T (T + T ) / T , . 
n+i n n n-i n-i 

Again for T = l /n, we have 

n = 1/T , n + 1 = 1/T ^ , l /T M - 1/T = 1 
' n * ' n+i n+i n 

so that 

T , = T / ( l + T ) . n+i n n 
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PROBLEMS 

lo Find the n term and the recursion relation for the sequence: 2, 6, 12, 
20, 30, 42, 56, 
Find the n t 
10, 13, 16, ••• 

2o Find the n term and the recursion relation for the sequence: 1, 4, 7, 

3* Determine the n term and the recursion relation for the sequence: 1, 
8, 27, 64, 125, 216, 343, e 8° „ 

4„ For Ti = 1, T2 = 3 and T n + = T / T . _ , find a form of express ion for 
the n term. (It may be more convenient to do this using a number of 
formulas,,) 

5„ Find the recursion relation for the sequence with the term T = \ZnT 
60 What is the recursion relation for a sequence whose term is a cubic poly-

nomial in n? 
7. If a is a positive constant, determine the recursion relation for the 

sequence with the term T = a . 
8. Find a recursion relation corresponding to T ,, = T + 2n + 1 which does 

^ & n+l n 
not involve n except in the subscripts nor a constant except as a coefficient, 

9. Find an expression^) for the n term of the sequence 
the recursion relation T T ,, = 1, where Ti = a (a not zero). 

n n+i i 

10o For the sequence with term T = n/(n + J), find a recursion relation with 
n occurring only in subscripts,, 

See page 260 for answers to problems. 

• * * • • 


