RECREATIONAL MATHEMATICS

Joseph S. Madachy
4761 Bigger Rd., Kettering, Ohio

Before I go on with new business, readers of this column should make the
following corrections in the February 1968 issue of the Fibonacci Quarterly
(Vol. 6, No. 1):

Page 64: In 18716, the fifth group of five digits should read 87257 and not
78257,

Page 67: The last few words in the fifth line under ""A Fibonacci Varia-

tion'" should read ' .. nF series in which each..."
Page 67: Under '"Some FibonacciQueries,'" for Fy3 = 2584, correct the
addition to read 2+ 5+ 8 +4 = 19,

Some browsing by myself through past issues of the Fibonacci Quarterly

disclosed an article by Dewey C. Duncan [2] in which Mr. Duncan anticipated
— in a slightly different manner — my Fibonacci variation [4, page 67]. I had
formed an hF series in which each term is the sum of the next two terms,
starting with (F = 0, F = 1:
o, 1, -1, 2, -3, 5, -8, 13, -21, 34, -55,

ete.

Mr. Duncan introduces Fibonacci number relationships involving zero and
negative indices, with

Fo =0, Fy=1 Fy=-1, Fg=2

and, generally, F—n = (-1) Fn' The Duncan series thus formed is
o, 1, -1, 2, -3, 5, -8, 13, -21, 34, -59,

etc. , which is identical to the nF series given previously.
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If n is zero or even, we have F_n = —Fn and nF = ’Fn for n odd,
wehave F =F and F =F .
-n n n n

Such is the beauty of the Fibonacci numbers and their variations!

PRODUCTS WITH DIFFERENT FACTORS CONTAINING THE SAME DIGITS

The following collection was derived from the Nelson table described in
[4, pp. 61-63]. The list shows products withtwo sets of factors containing the
same digits, e.g. (6)(4592) = (56)(492). Trivial solutions or those derived

from simpler forms, are not listed. For example

(23)(794) = (23)(794)

(6)(500) = (600)(5)

and others similar to the above are excluded.

The list contains one set of factors (the Sth set) in which the digits are in
the same order, and four sets of factors (the first four)in which the digits are
in reverse order.

If the list proves incomplete, I would deeply appreciate new results found
by readers.

(Factors)y (Factors), Product
(6)(21) = 126 126
(3)(61) = 153 153
(50)(6) = (60)(5) 300

(4)(567) = (7)(6)(54) 2,268
(6)(3128) = (23)(816) 18,768
(4)(72)(86) = 24,768 24,768
(6)(4592) = (56)(492) 27,552
(7)(3942) = (73)(9)(42) 27,594
(9)(3465) = (63 x495) 31,185
(53)(781) = (71)(583) 41,393
(9)(7128) = (81)(792) 64,152

(4)(56)(729) = (9)(24)(756) 163,296
(6)(93)(428) = (248)(963) 238,824
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(7)(62)(918) = (9)(51)(728) 334,152
(92)(8736) = (96)(8372) 803,712
(6)(7)(84) (531) = (8)(413)(567) 1,873,368
(82)(53671) = (562)(7831) 4,401,022

(8) (935721) = (9)(831752) 7,485,768

(24)(756)(813) = (54)(273168) 14,751,072
(9)(76)(25143) = (57)(493)(612) 17,197,812
(4)(86)(53217) = (216)(84753) 18,306,648
(34)(96)(5721) = (576)(32419) 18,673,344
(4)(657)(8213) = 21,583,764 21,583,764
(9)(561)(4372) = (594)(37162) 22,074,228
(64)(78)(9251) = (96)(572)(841) 46,180,992

In the April 1968 issue of the Fibonacci Quarterly [5, p. 166], I had

asked you to demonstrate that no consecutive set of Fibonacci numbers could

be used to form a magic square. In any nxn (n must be greater than 2)
magic square composed of n® positive integers, the magic constant (the sum
of the integers in each row, column, and long diagonal) is the sum of all the
integers divided by n. Therefore, any integer appearing in a magic square
must be smaller than the magic constant.

The demonstration involves showing that the largest integer appearingin
an array of consecutive Fibonacci numbers is larger than the magic constant
— hence such a magic square is impossible.

The sum of the first p Fibonacci numbers is Fp+2 - 1, where Fp+2
is the ( + Z)th Fibonacci number. The sum of any q consecutive Fibonacci

numbers, where Fp is the first and qu_1 is the last term is

(Fp+q—l—1 -1 - (Fp+1 -1) = Fp+q+1 - Fp+1 °

Let F_ be the first integer in a series of n? consecutive Fibonacci

2

numbers. The largest will be Fp+n2 and the sum of these n® terms will

-1
be

(1) F - F =8

pnd+1 p+ array
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where Sarray’ then, is the sum of the integers in an nxn array of n® con-

secutive Fibonacci numbers., From equation (1) we can write

2)

<F
Sarray I1p+nz+1

Three consecutive Fibonacci numbers, starting with F are:

p+n?-1

Fp+n?'-1 ? Fp+n2 ’ Fp+n2+1

where

Fp+n2+1 - »Fp+n2—1 " Fp+n2 .

Also, in any set of thfee consecutive Fibonacci numbers (excluding the first
three 1, 1, 2), we have

Z <

Fp+n2 Fp +n?-1 Fp+n2— 1
or

Fp+n2 = Fp+n2_1 -+ K ,
where

<
K< Fe, -
Then
Fp+n2+1 - Fp+n2-1 * Fp+n2-1 K= 2Fp+:r12-1 TK-.

Since K < F we have

p+n®-1

<
2Fp+n2_1 + K 3Fp+n2_1

or
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< 1
F1o+nz+1 3I‘p+n2—1

From inequalities (2) and (3) we have

@)

<
Sarray 3Fp+nz-1

If we divide (4) by 3 we obtain

Sarrax < -
3 pthé-1

That is, the magic constant for a 3 x 3 array of 9 consecutive Fibonacci

numbers will be less than the largest Fibonacci number in the array. It fol-

lows that
S
AV <, 0, (<3
n ptn-1
where (Sarray )/n is the magic constant for an n x n array, is also true —

and so consecutive Fibonacci numbers cannot be used to construct magic
squares.

Some general results concerning Fibonacci numbers and magic squares
appear in [1]. There Brown proves the general case that no set of distinct
Fibonacci numbers can form a magic square.

Also in [ 3] Freitag shows a magic square constructed with Fibonacci
numbers and sums of Fibonacci numbers. One magic square is shown which
has terms, each of which is composed of the sum of two Fibonacci numbers.

This last item raised a trick question which I pass on to readers: Cana
magic square be constructed in which each term is the sum of two consecutive

Fibonacci numbers?

This column for the December 1968 issue will contain an article by Free
Jamison and V. E. Hoggatt, Jr., on the dissection of a square into acute isos-
celes triangles — an extension of a familiar idea. Also, as a result of some
work by Charles W. Trigg appearing in the July 1968 issue of the Journal of

Recreational Mathematics, I'll present some recreations in instant division.
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It is also relatively easy to demonstrate that a positive integer n is a

perfect number if and only if the sum of the reciprocals of the positive integer

divisors of n is 2.

If you have some free time why don't you investigate the topic of perfect

numbers or, better yet, why don't you suggest it as apossible project for some

talented student in one of your high school mathematics classes?

* &k ok ok Kk

[Continued from p. 298. ]

With these the desired results are immediately available.

Also solved by Herta T. Freitag, C. B. A. Peck, A. C. Shannon (Australia),
and the proposer.
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