- 2. E. P. Adams, Smithsonian Mathematical Formulae and Tables of Elliptic Functions, The Smithsonian Institution, Washington, D. C., 1947, pp. 159-160.
- 3. National Bureau of Standards, <u>Handbook of Mathematical Functions</u>, AMS 55, U. S. Government Printing Office, Washington, D. C., 1964, pp. 824-825.
- 4. D. C. Fielder, "Partition Enumeration by Means of Simpler Partitions," The Fibonacci Quarterly, Vol. 2, No. 2, April, 1964, pp. 115-118.
- 5. J. V. Uspensky and M. A. Heaslet, <u>Elementary Number Theory</u>, McGraw-Hill Book Co., New York, New York, 1939, pp. 94-99.

ERATTA FOR

FACTORIZATION OF 2 X 2 INTEGRAL MATRICES WITH DETERMINANT ±1

Gene B. Gale San Jose State College, San Jose, Calif.

Please make the following corrections to "Factorization of 2x2 Matrices with Determinant ± 1 ," by Gene B. Gale, appearing in the February 1968 issue, Fibonacci Quarterly, pp. 3-22.

Page	Line	Reads	Should Read
5	6	d < 0	$d \ge 0$
5	-8	$c \le d$	$c \le d$
8	-3	ru – st	ru
9	5	$ad - bc \ge ad - cd = (a - c)d \ge 0$	$ad - bc \ge ad - cd = (a - c)d \ge 0$
9	-1	$\begin{pmatrix} a & r+1 \\ c & w \end{pmatrix}$	$\begin{pmatrix} a & r+1 \\ c & d \\ c, d \ge 0 \end{pmatrix}$
9	4	$\mathrm{cd} \geq 0$	$c, d \geq 0$
∮11	$\begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix}$	N	n
(12	3)		(- 1)(1)
12	-6	ar = (a - 1)(r - 1)	ar - (a - 1)(r - 1)
15	6	$d(rF_{k} + sF_{k-1})$	$d \left (rF_k + sF_{k-1}) \right $
16	-4	A_2B	A, B
17	-9	$\frac{ab - bc}{bd}$	$\frac{\text{ad} - \text{bc}}{\text{bd}}$

Continued on p. 112