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The purpose of this paper is to demonstrate the construction of a linear 
algebra with whole Fibonacci sequences as elements* Sequences of complex 
numbers are considered; hence, this is an algebra over the complex field. 

To be of more than curious interest, of course, the algebra must lead 
somewhere. The vector space leads to geometric interpretation of sequences. 
The ring leads to polynomial interpretations, and in particular, to binomial 
expressions. Part II will deal with functions and Taylor series representations. 

Only a knowledge of modern algebra at the undergraduate level is required 
to follow the discussion in Part I. A smattering of topology is required for 
Par t II. Proofs are elementary and are usually based on definitions. In some 
cases, the reader is asked to fill in the details himself. We begin with.0 

Definition 1.1. A Fibonacci sequence U = (U[), i = 0 , 1 , e o e , is a s e -
quence that has the following properties0 

1. u0, Uj are arbitrary complex numbers, 
2. u , = u + u , n = 1,2,6 e • . 

n+i n n - r 
2P will denote the set of all Fibonacci sequences. Any sequence may be 

extended to negative subscripts by transposing the recurrence formula; i. e . , 
u = u LJ - u . n-i n+i n 

A list of special sequences follows0 

A =• ( l , a , a 2 , °°°)s OL 

B= ( l f 0 f 0 V . - ) . j8= ^ ^ 
F = (0, 1, 1, 2, • • •) 
I = (1, 0, 1, 1, •••) 

L = (2, 1, 3, 4, •••) 
O = (0, 0, 0, . - . ) 

In addition to this, we use the symbols C, R, and Z for the complex, reals , 
and integers, respectively. 
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Definition 1.2. For all U, V G 3 , U = V<=>u. = v., i = 0 ,1 , 2, • • • . 
Definition 1.3. For U, V G J , U + V = (u. + v . ) , i = 0 ,1 , • • • . 
Definition 1.4. For a E C, U G J , aU = (au.), i = 0 ,1 , • - • . 
Theorem 1.1. 3" is a vector space. 
Proof. It is a well-known fact that sums and scalar products of Fibonacci 

sequences yield Fibonacci sequences. The reader is asked to fill in the r e -
mainder of the proof from the definition of a vector space. The zero vector is 
(0, 0, • • • ) , and any additive inverse is given by -U = (-UQ, -\\i3 • •••) . 

Theorem 1.2. The dimension of 2f is 2. 
Proof. Consider the vectors I, F, and O, and suppose that al + bF = 

O. By definitions 2, 3, and 4, the first two terms yield a = b = 0. If we in-
sist that a or b be non-zero, then al + bF = U ^ O. We now find that a = 
u0, b = Uj. From û E + UjF = U we find from the n term that u0F + u4F 
= u « which is a well-known property of all Fibonacci sequences. Hence, an 
arbitrary vector is uniquely determined by two linearly independent vectors in 
F, and the theorem is proved. 

Theorem 1.3. F is isomorphic to V2(C), the vector space of all ordered 
pairs of complex numbers,, 

Proof. Any vector space is isomorphic to the vector space of n-tuples 
of its components relative to a fixed basis. Hence, for 

U G 3D, U = u^ + U i F f r ^ U ^ - ^ ^ U i ) e V2(C) . 

As a consequence of Theorem 1.3, we may agree to identify an arbitrary 
sequence U = (u.), i = 0 ,1 , • ' ' ,• with the pair (u^u^, and write U = (UQ,^) . 

Property 2 of definition 1.1 has been suppressed, so we turn our attention to the 
construction of a ring that will bring this property back into evidence. 

Definition 1.5. For U , V E J , UV = (u0, v0 + UJVJ, uQv1 + VLJVQ + u1v1 ). 
Theorem 1.4. 3P is a commutative linear algebra with unity I = (1,0). 
Proof. The reader is asked to fill in the details again. 
Associated with each sequence is a complex number, called the charac-

teristic number, that describes many properties of the sequence in the algebra. 
Definition 1.6. The characteristic number C(U) of a sequence U = (u0, 

Uj) is the complex number UQ + u0Uj - Uj = u0u2 - uf. 
Theorem 1.5. C(U) ^ O^^U has a multiplicative inverse U G J , 
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Proof, If U has an Inverse (x,y)s then (u0,u1)(x,y) = (l90)o 

This is equivalent to the equations 

u0x + Uly = 1 
(1) 

u0y + u4x + Ujy = 0 . 

Since either u0 =/ 0 or ut ^ 05 we may reduce equations 1 to 

2 9 
X(UQ + UQUJ - U J ) = U0 + Uj 

(2) 
y(^0 + U0Ui " u i ) = " U l • 

The remainder of the proof is obvious. 
Corollary 1.1. If C(U) ^ 0S then 

U " 1 = ^ (u2> ™ui) • 

Corollary 1.2. C(U) = 0<=>U = a ( l , a ) , b(l,/3). 
Proof. Solve the equation Ug + UQUJ - u\ = 0 for u 0 /u t . 
The sequence F = (0,1) plays a major role in the algebra as a shifting 

operator, and brings property 2 of definition 1.1 back into evidence. 
Theorem 1.6. F ^ = (u , u , )9 n G Z. v n* n+r 
Proof. Note that 

FU = (O.lHu^Uj) = (ul9u0+Ui)9 

and that 

F^U = (-1,1)010,^) = (uru0 5u0) . 

The res t of the proof follows easily by mathematical induction. 
Theorem 1.7. CCF1^) = (~l)nC(U)5 n E Z. 
Proof. Note that 

C(FU) = u2i + u ^ - u | = u\ + U^UQ + Ul) - (u0 + Ui)2 

= -(ug + UoUi-u?) = -C(U) . 
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The res t of the proof follows easily by induction. 
Theorem 1.8. C(U) £ 0, and n ^ m<=>FnU, F u are linearly inde-

pendent in dr. 
Proof, We test for linear independence by setting a(u ,u ) + b(u , 

u
 + 1) = (0»0). This is equivalent to the two equations 

au + bu , = 0 
(3) n n + 1 

au + bu , = 0 . m m+i 

Since all u. 7̂  0, we may reduce equations 3 to 

(4) a(u u J j - u , u ) = 0 . w x n m+i n+i m ; 

n / m by hypothesis, so let m = n + k, and use the identities u = u , = 
u F. , + u ..F, and u , = u I I 1 = u L F , + u , F , . Equation 4 may n k+i n+i k m+i n+i+k n+i k-i n+2 k ^ J 

now be reduced to 

(5) a(u u _ - u2 )F, =aC(FnU)F1 = 0 
w x n n+2 n+r k v ; k 

Since C(F1TJ) = (-l)nC(U) ^ 0, and F, ^ 0 in general, we must conclude 
that a = 0, which in turn implies that b = 0. 

The converse is proved by assuming that a, b are not both zero. We 
can, without loss of generality, assume that a ^ 0, which implies that u u 
- u^+1 = 0. Thus CfF^U) = 0 =>C(U) = 0. 

An alternate form of the product in "3* is now given. 
Theorem 1.9. UV = u0V + UjFV = v0U + VjFU. 
Proof. The proof follows immediately from definition 5. 
Multiplication in the ring is equivalent to a linear transformation in the 

vector space, or symbolically, UV = U(V) = V(U), where U(V) means U 
transforms V. This can be written in matrix form 

(6) UV = (YQsvt) 
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Any sequence of complex numbers can be decomposed into two sequences 
of real numberse 

Theorem 1.10. U = X + iY, where U E 1(C) s and X J 6 ^(R). 
Proof. The reader is asked to supply the details. 
The vector space in T is obviously a unitary 2-space, and the res t r i c -

tion of ? to real sequences yields a Euclidean 2-space. Some interesting 
geometric interpretations follow from this, but lack of space prevents further 
exposition here. 

POLYNOMIALS IN J OVER C 

The polynomial interpretation of T leads to some interesting results. 
We now establish the conditions for writing polynomials with sequences as 
Tlndeterminantsn and coefficients In the complex field. 

Theorem 1.11. C is embedded in 3 \ 
Proof, Let iptC—>~¥ be defined by the rule: i//(a) = (a, 0) = al, V'a E C. 

We ask the reader to complete the proof. 
Integral powers of Fibonacci sequences make sense as a consequence of 

our definition of multiplication in 3\ The classic conditions for writing poly-
nomials exist, so that p(X) = a0 + atX + • • • + a X makes sense, but this is 
not the whole story. p(X) is a linear combination of the elements X G J , 
and can be expressed uniquely as a linear combination of any two linearly inde-
pendent elements in 3 \ If it so happens that C(X) ^ 0, then by theorem 1.8, 
X, FX are linearly independent, and there exist k0, kj E C } not both zero, 
such that p(X) = k0X + kjFX. But K = (k0skt) E ?J, and by theorem 1.9, 
p(X) = KXe The linear independence of powers of X does not exist in poly-
nomials in J over C. This explains why each of the hundreds (possibly thou-
sands) of known summations involving Fibonacci numbers is expressible as a 
linear combination of at most two Fibonacci numbers. The addition formula 
for elements of a Fibonacci sequence is a case in point, which can easily be 
derived in 3; Try It for an exercise. 

The sequences I n = I = (1,0) and F n = (F 4, F ) may be written 
n down termwise by inspection. L follows easily. 

Theorem 1.12. L2k = 5k(F2kml, F 2 k ) , and L2 k + 1 = 5k(L2k, L2k+1)9 

Proof.8 L2 = (2,1) (2,1) = 5(1,1) = 5F2, from which L2k = 5kF2 k. 
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L2k+i = L2kL = 5kF2kL m 

Several formulas for the general case U will be given. 
Definition 1.7. The term of U bearing the subscript k will be desig-

n st 
nated (U ) , , k = 0,1,2,-»- (the k term is actually the (k+1) term by 
ordinal count). 

Lemma 1.1. Let c. E C, i = 0, ! , • • • , n , and let U E ?. Then 

Zciui =(Eci(ul)o.X!vui)i 
i=o \ i=o i=o 

Proof. The reader is asked to supply the details. 
Theorem 1.13. 

n 
/TTn, \ ^ /n\ n-i i^ 
<u >k+i = 2 _ , ( i j u o u i F k + r 

i=o 

Proof. 

n 
TTn , _ , ^,n \ ^ / n \ n-i i „ i 
U = (u^+UjF) = 2 ^ ( i ) u ° U l F 

i=0 

Lemma 1.1 and definition 1.7 supply the remainder of the proof. 
An alternate form of theorem 1.13 is 
Theorem 1.14. 

k, . xn ok, , 0 xn 
(un)k + 1 = -

a-fi 

Proof. Substitute the Binet formula, 

J a-fi 
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into theorem 1.13, and reduce it to the form shown. 
Example 1.1. Consider the generating function 

(7) D n = (I + F k ) n = Y ( n ) F k i >" • E (") 
1=0 

where 

<8> <Dn)J+i = Z (i) Fki+j • 
i=o 

If k = 1, I + F = (1,0) + (0,1) = (1,1) = F2, and 
n 

W <Dn)j+i=(F2n)j+1 = F
2n+j=I](")Fi+j 

i=o V ! 

If k = - 1 , I + F 1 = (1, 0) + (-1 ,1) = (0,1) = F, and 

n 
) n ) J + r ( F n V r F n + J = E ( i ) r - i 

i=l 
(10) (D' 

But since F ,. ~ = (-1) F-_-* w e n a v e 

<"> Fn^ • la l i ) H ) H + , F H . E (") H 
1=0 

If k = 2, I + F2 = (1,0) + (1,1) = (2,1) = Le From Theorem 1.12, we get 

(12) 5 n / 2 F n + j E u ) F 2 i+ j » f o r e v e n n> a n d s ( n ^ 2L
n+j = %\ HF2i+j' f o r o d d n-
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This may be generalized for even k. If the reader will verify that I + F 4 m = 
L 2 m F 2 m , and I + F 4 m + 2 = F 2 m + 1 F 2 m L s then he may compute (Dn).+j[, and 
complete the problem. 

Much of what we know about polynomials may be applied to polynomials 
in 3P over C. The possibilities of generating term-by-term Fibonacci rela-
tions is unboundede 

ADDITIONAL NOTES 

1. Let M be the set of all matrices of the form 

u = U uo + uj* w e e 

and let the operations be the usual operations of matrix algebra. Then M is 
isomorphic to F. 

2. Let c[x] be the set of polynomials in x over C, and let s(x) = x2 - x -
1. Then C [x] /s(x) is the ring of residue classes of polynomials over C 
modulo x2 - x - 1. Each residue class has the form [u0 + u-̂ x] with opera-
tions defined by 

K + u i x ] + [vo + v ix] = K + vo + ( u i + vi)xl 

[u0 + utx] [v0 + vjx] = [u0v0 + n1vi + (u0V! + u ^ + u ^ J x ] . 

If we add the redundant operation 

afuQ+Ujx] = [aug + a u j x ] , 

then C[x]/s(x) is a linear algebra, and furthermore, C[x]/s(x) is isomor-
phic to 5". 
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The dome of the famous Taj Mahal, built in 1650 in Agra, India, is ellip-
soidaL Now, the ellipse has the geometric property that the angles formed by 
the focal radii and the normal at a point are congruent Also, it is a fundamen-
tal principle of behavior of sound waves that the angle of incidence equals the 
angle of reflection. Thus, sound waves issuing from focus A and striking any 
point on the ellipse will be reflected through focus B„ 

The builder of the Taj Mahal, Shan Jehan, used these basic principles 
well in his memorial to his favorite wife who was called Taj Mahal, Crown of 
the Palace. Honeymooners who visit the shrine are instructed to stand on the 
two foci which are marked in the tile floor. The husband whispers, TfTo the 
memory of an undying love," which can be heard clearly by his wife who is 
more than fifty feet away but by no one else in the room. 

REFERENCE 
Kramer, Edna E , , "The Mainstream of Mathematics, " Premier (paperback), 
New York, 1961, p. 152. 


