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PART I I : FUNCTION SEQUENCES AND TAYLOR SERIES OF FUNCTION SEQUENCES 

J , W. GOOTHERTS 
Lockheed Missiles & Space Co . , Sunnyvale, Cal i f . 

In Part I, the algebra 3D was constructed from the set of complex Fib-
onacci sequences. Finite polynomial and binomial interpretations were con-
sidered. We now consider a class of functions defined in 3f, which are models 
of prototype functions in C. These are extended to include Taylor series 
representations. 

We first consider an auxiliary algebras which is constructed from bits 
and pieces of easily recognizable structures. As in Part I, many of the proofs 
are elementary^ and the reader is asked to fill in the details himself. 

Definition 2.1 Let G = j(a, b) :a, b E C \, and define equality and three 
operations as follows: For (a l sa2)3 (b1,b2) E G9 c E Cs 

1. (al5a2) = (b1,b2)<=^a1 = bl 3 a2 = b2 . 
2. (al3 a2) + (his b2) = (at + b l s a2 + b2): 
3. (al 3a2)(bl sb2) = (a.tbpa2h2), 
4. c(al5a2) = (calsca2) . 
Theorem 2.1 G is a commutative linear algebra with unity (1,1). 
Proof. The reader is asked to fill in the details. 
Definition 2.2 Let (f>:F—-»G be a function defined by the rule: 

(^(u^Uj) = (Uj + auj , u0 + )3UJI) for all U E X 

Theorem 2.2. (f>ij —> G is an isomorphism. 

Proof: 4> is obviously a 1-1 linear transformation from the vector 
space $ onto the vector space G. We need only show that <f> preserves^ 
multiplication. For U, V E 19 
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(1) <f>(UV) = <^(U0V0 + UjVi, UQVJ + U ^ + UjVi) 

= (U0V0 + UiVj + <* (U0Vi + UJVQ + UjVi) , U0V0 + UjVi 

+ jStUoVi+UiVo + UjVi)) 

= (U0V0 + O^UoVj + UJVQ) + (Of + l J U ^ i , U0V0 

+ /8(u0Vi + UJVQ) + (/3 + l j u^ i ) 

= ( (u 0 +au 1 ) (v 0 + ov^^Uo + jSujXvo+iSVi)) = <f>(U)</>(V) . 

The mapping 0 was motivated by considering the linear factors of the 
characteristic number; i. e s , 

C(U) = UQ + UflUj - u | = (Uo + aUjXUo + jSUi) . 

Some fundamental vectors are mapped as follows: 
1. 0(A) - 0(1, or) = (1 + a2,0) 
2ffl 0(B) - 0(l? /3) - (0,1 + jg2) 
3. 0(1) = 0(1,0) = (1,1) . 

As B determine the coordinate planes, and I determines a plane of symmetry, 
which will become significant later. A characteristic number for each 

X - (xlfx2) G G 

can be defined as 

C (X) = xt x2 . 

Thus for U G ' J , C(U) - C(0(U))e 

Definition 263 Let f be an arbitrary function defined on a domain D C 
Cs Define a corresponding f: DXD—>G by the rule: 

f(X) = t(Xi,X2) = (f(X,)ff(X2)). 

whenever no confusion will exists we will agree to identify f with f and 
write f(X) = f(X). 
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Definition 2.4. If f is defined on D C C , and if U '= (Uj, Uj) E ¥ is 
such that 

u0 + aul9u0 + /Suj E D, 

define 

f* : ^ ( D X D J - ^ F 

by the rule: 

f*(U) = ^ ( f f c ) ) , 

where X = 4>(U)9 or more simply 

f *(U) = ^fy^fU) . 

The notation used herein for composition of maps i s : the order of events 
reads from left to right, or 

c^fc/fV) = </>""* (^(</>(u))) . 

We may again agree to identify f with f whenever no confusion will result, 
and say f *(U) = f(U) = f(U) . 

Theorem 2.3. The formula for f * is 

f(u0+ ar.Ui) - f(u0 + fiut)). 

Proof. The proof follows directly from Definition 2.4. 

Corollary 2.1. If f(x) = c (a constant), then f*(U) = c l . 

Corollary 2.2 f*(al) = f(a)I. 
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The reader may verify that the functions defined above are well-behaved 
Fibonacci sequences, and are thus, elements of 5s, The reader may further 
verify the following identities for some elementary functions? For U, V E 3P, 

1. exp U exp V = exp (U + V) 
2. exp (-U) = (expU)""1 

3. sin2 U + cos2 U = I 
4. sin U cos U = -^ sin 2U 
5. sin U (cos U)*"1 = tan UB 

All operations must, of course, be those defined in if'. The brute force 
approach required by Theorem 2.3 and the subsequent arithmetic in 3P can be 
tempered by a trick? do the arithmetic in G. 

Example 2816 Show that 

sin (U + V) = sin U cos V + cos U sinV. 

Since 

sin (x + y) = sin x cos y + cos x sin y 

is an identity in C, definition 2.1(1) gives 

(2) (sin(x1 + yj), sin (x2 + y2)) = (sin xt cos yt + cos xt sin yt 9 

sin x2 cos y2 + cos x2 sin y2) 

as an identity in G9 We appeal now to definition 2.3 for the left side of (2) and 
to definition 2.1(2), (3) for the right side. 

(3) sin ((x4 +yi ) , (x2 +y2)) - (sin xl9 sin x2)(cos y1? cos y2) + 

(cos Xj, cos x2) (sin yl9 s iny 2 ) . 

We now reverse our position and appeal to Definition 2.1 for the left side and 
Definition 2.3 for the right side of (3). 

/ \ / \ / \ 
(4) sin ((xlsx2) + (yi,y2)) = sin(x1,x2) cos (y1,y2) 

+ cos (xj, x2) sin (Yi, y2) , 
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(5) sin (X + Y) = sin X cos Y + cos X sin Y . 

Definition 2.4, together with Theorem 2.2, yields 
(6) sin* (U + V) = sin* U cos* V + cos* U sin* V . 

the asterisk may be omitted because of our previous agreement. 
We have proved in example 2.1 that 

sin (x + y) = sin x cos y + cos x sin y £ C —* sin (U + V) = sin U cos V 
+ cos V sin V C3?. 

Notice that, although the work was done in G, no element of G is evident in 
the final resu l t This is why G was called an auxiliary algebra in the 
introduction. 

SOME SPECIAL FUNCTIONS 

We could continue to define and explore Fibonacci function sequences ad 
infinitum, but we shall limit the discussion to two very elementary ones. Firs t 
a theorem must be proved, 

Theorem 2.4. If f and f"-1 both exist on a subset of C, then 

(f*)-* = (f-1)* 

on the corresponding subset of J . 
Proof, f *(U) is known from Theorem 2.3. Then 

(7) f*(U)-^f(X) - (fix^tfix^^irHUx^if-HfiXz))) 

= (xl9 x2) = X • U . 

From Definition 2.4, we have 

(8) (r^fcxi)),ri(f(xjs))) - ^ ( f " 1 ) * ' (f*(U)). 
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Since </>~1 is a mapping, 

so 
U = (f^)*(f*(U)) , 

(f-if = (i*)"1 . 

A very fundamental function is now given by: 
Definition 2.5. For U , V E J : , define U = exp 
When written in terms of the components of Us Vs 

(9) (uo + auj) -(uo + jSuj) ) . 

Since In z is a many valued function., some trouble may arise from Defini-
tion 2.5. The author offers the conjecture that no trouble will arise. Perhaps 
one of the readers will explore this possibility, 

If V = nl, Definition 2,5 is specialized to Theorem 1.14. Another e le-
mentary but interesting set of relations are the multiple n roots of a sequence. 

Theorem 2.5. There are n2 distinct ifi1 roots of U ^ 0 £ J , 
Proof. Let 

r 4 = juo + auil* r 2 = jUo + ^Uij , 

and 

a . (i = 0, V ' , n - i) 

be the complex roots of unity. Then 

(10) Ul/n = ^ j (a-h^-p-^ioyr^ - r2<o.) . 

If N is the number of possible solutions* then clearly N < n2. We must show 
N <£ n2. Assume the contrary; i . e . , there are at least two identical solutions* 
which must be termwise equal. 
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(11) a - 1 ^ ^ - / J -^cy . = arhiQ)^ - P'%^ 

r ^ - r2co. = rlCok - T2<OZ . 

Both co. 7̂  oi. and o>. ^ (o^ must hold or the hypothesis is contradicted immed-
iately. Thus, 

(12) or2 (OJ. - w£) = /Jrj (a>i - cok) 

r2(co, -ct>£) = rt fe>. - a>k) . 

If we substitute from the second equation into the first, 

(13) c*(a>. - o k ) = jStoj - cok) , 

which is clearly impossible unless OJ. = a>,. This in turn implies that co. = 
I K 3 

OJW. Thuss the hypothesis is contradicted, and the theorem is proved. 
The reader is invited to find the four square roots of F2 = (1,1) (cf. 

Theorem 1.12). 

TAYLOR SERIES REPRESENTATIONS 

In order to use the very useful concept of Taylor series representations 
of complex functions, a definition of convergence in 3 must be formulated. 
A very short excursion into topology (metric spaces) will furnish the necessary 
foundation. Let d be the usual metric on C defined by 

d(z1?z2) - jz2 - z j | 

for all zi9 z2 E C. The next few theorems are so elementary that the proofs 
are omitted; however, they must be stated. Since the underlying set of G is 
CXC, we may give 

A 
Definition 2.6. Let d : GXG—>R be defined by the rules 

d(X, Y) = maxfcLfx^Vi), d(x2,y2)) = max (\y1 - xt , y2 - x2 ) . 
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Theorem 2.6. d is a metric; hence, (G9 d) is a metric space. 
An open sphere in G of radius r about the point X is 

Sr(X) = \ Y G G :d(X s Y) ^ r }. 

If 

^ ( X ) = U, ^ ( Y ) = V , 

then 

*-i(Sr(X)) = S*(U) = {v G aFrmaxClvo-Uo + a ^ i - U i ) ! , 
jv0 ~ u0 + j8(Vi -Ui) | ) £ rf. 

If we restr ict ? , G to real numbers, then 

is the interior of a golden rectangle with diagonal of length 2r, centered on U, 
and parallel to the vector I, and with short sides parallel to A, and long 
sides parallel to B„ This fact should delight any true Fibonaceiphile, and 
motivates: 

Definition 2.7. Let d*: 3FX.3P -»R be defined by the rule: 

d*(U,V) = max ( | v 0 - u 0 + a ( V j - U ^ I ^ V Q - u 0 + yS(Vj - ux) | ) . 

Theorem 2.7. d* is a metric; hence, (F, d*) is a metric space. 
Theorem 2.8. </>:(3F, d ) —>(G, d) is a homeomorphism. 

By design the metric spaces QP, d*)s (G, d) are topologically equiva-
lent. The necessary groundwork has now been laid for the theorem on 
convergence. 

Theorem 2.9. If 
00 

f ( z ) = 5Z a i (z - zo)x 

i=o 

is a Taylor series for z E S f (z0), then 
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oo 
f*(U) = S ai(U " ZoI)i f ° r U E Sr( Z o I ) * 

i=o 

Furthermore: 

00 

(f*(U))k
 = X I a i ( ( U " ^ k ' k = 0 , 1 , - - - . 

i=o 

Proof. Let zl5 z2 E Sr(z0). Then for any e >0, there are Nj, N2 such 
that for n > max(Nl9 N2)s we have 

n 

(14) J2 a i (zi : z o ) X G S€(f(Zl)) , and 
i=o 

n 

(is) ^T ai (z2 - zo)1 es€(f(z2» . 

i=o 

Since these sums are in the coordinate spaces of G, we have 

n 
( 1 6 ) ]Cai ( ( Z l " Z o ) 1 ' (Z2 " Z o ) i ) G S€(f(Zi),f(z2)) . 

i=o 

But by the definitions of operations in G, 

(17) ((zj - z 0 ) \ (Z2 - ZQ)1) = (zj - z 0 , z2 - ZQ)1 

= ( ( z l f z 2 ) - ( Z Q . Z O ) ) 1 

= (Z - Z0)x for i = 0, l , - - - . 

Hence, 
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n 

(18) Z]ai (Z " Z ° ) 1 G ^(f(Z)) • 
i-o 

Let U = 4>-HZ). Then 

u e <t>-Hsr(z0)) 

or 

U G S*(ZoI) . 

By Theorem 2.8S 

n 

(19) XX (U " z 0 J ) k e S*(f*(U)). 
i=o 

Since CXC is the underlying set of 5* and G, and since CXC is always 
complete as a metric space, the limits exist, which proves the first statement 
of the theorem. 

Now consider a partial sum with remainder in G. 

n 
(20) f(Z) - J / . ( Z - ZQ)1 = (el9e2) . 

i=o 

Since this is a finite sum, write the k term under the mapping c/r1 . 

n 

(21) (f(U))k ~ ^ a i ( ( u " z o I ) \ = (e i ,e2 ) k = (E) k . 
wi=o 

From the first part of the proof, E—> Oi and by definition (O). = 0. Hence 
(E), —>0 for each k and the theorem is proved. 
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Example 2.2. Let 

(22) (1 - zf( k + 1 ) - > I *V x J zx for z G S^O) £(k
t
+1)*' 

i=o \ / 

be the prototype complex function. Clearly -^F E S*(0). By Theorem 2,9 we 
may write 

00 / v 

(23) (I - |F)-(k+1> = 2 ( k k 1 ) ( ^ 1 

i=o \ ' 

Reducing the left side of equation 23 yields 

(24) (I - - fF)~(k + 1 ) = (((1,0) - (O,! ) )" 1 )^ 1 

= (2 (2 , - l ) - i ) k + 1 = 2 k + V k + 2 

st Taking the (j + 1) term from each side of equation 23 gives 

?2k+2+j " ] C ( k k 1 y 7 t L • (25) 2 k + 1 F 2 k + 2 + i = > ( ~ t
 A ) - ^ - , k = 0 , 1 , 2 , - - - , 

j = 0, ±1, ±2, 
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