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It was shown by Appell f l l that if u^ and u2 denote two linearly inde-
pendent solutions of 

| D 2 + p(t)D + q(t)ly - 0 

2 2 

then ul5 u-jU25 u2 denote three linearly independent solutions of the third-order 
linear differential equation 

<D3 + 3pD2 + (2p2 + pf + 4q)D + (4pq + 2qT)ly = 0 . 

Watson [2l shows that if 

<D2 + iiy = 0, | D 2 + j l w = 0 , 

then y = vw satisfies the fourth-order differential equation 

D j ̂ - 2 ( i + j)y + (r+J0y j = _(I _ JJ ( I ^ m 

Bellman [3] gives a matrix method for obtaining Appell1 s result and notes that 
the method can be used to find the linear differential equation of order mn 
whose solutions are the products of the solutions of a linear differential equation 
of order m and one of order n. 

We now obtain analogous results for linear difference equations, 
Let <A > and <B > denote sequences defined by the second-order linear 

difference equations 

(1) A ^ = P A + Q A A , 
x ' n+i n n ^n n-i 

(2) B ± = R B + S B . 
n+i n n n n-l 

86 



Nov IQfiR 0 N T H E L I N E A R DIFFERENCE EQUATION WHOSE SOLUTIONS ft7 
ARE THE PRODUCTS OF SOLUTIONS OF TWO GIVEN LINEAR 

DIFFERENCE EQUATIONS 
w h e r e A0, A1? B0, Bt a r e a r b i t r a r y and P ,Q , R 5 S a r e given, 

If Mi and u2, Vj and v2 denote p a i r s of l inea r ly independent solutions 

of ( l ) and (2 ) , r e spec t ive ly 5 then we f i r s t obtain the t b i r d - o r d e r l inea r difference 

equation whose solution i s given by 

kill? + kgujug + k3u2 

where the k.Ts a r e cons tants . Squaring (1) and let t ing C = A , we obtain 

(3) C ^ = P 2 C + Q 2 C , + 2 P Q A A . 
n+l n n n n - l n n n n - i 

o r 

(4) C _ , - P 2 C - Q ? C 4 = 2 P Q A AP A + Q A J ' n+l n n n n - i n n n - i n - i n - l n - l n-2 

= 2 P P Q C .+ 2 P Q Q A A o . n n - i n n - l n n n - i n - l n-2 

By d ec r e a s ing the index n by 1 in (3),- we can e l iminate A A to obtain 

(5) P ,C ^ = P (P P + Q )C + P Q (P P + Q J C , 
n - l n+l n n n - l ^ n n n - i n n n - i n n - i 

- P Q Q 2C n n n - i n-2 

o 

We now obtain the fou r th -o rde r equation whose solution i s given by kjuj 

+ kjUi + k2uiu2 + ksUjuJ + k4u|8 Cubing (1) and let t ing D = A 3 , we obtain 

(6) D ^ - P 3 D - Q3D = 3P 2 Q A2A A + 3P Q2A A 2 
x ' n+l n n n n - i n*n n n - l n n n n - l 

= 3P 2 Q A2A + 3P Q2A 2(P A , +Q^ A ) n n n n - l n n n - l n - l n - l n - l n-2 

o r 

(7) D ^ - P 3 D - Q 2 ( 3 P P + Q )D = 3P 2 Q A 2 A 4 s n+l n n n ' n n - i n n - l n n n n - l 

+ 3 P Q 2 Q A 2A = ' 3 P 2 Q ' A (P A +Q A J 2 
n * n *n-i n - l n-2 n*n n - i n - i n - l n - l n - 2 ' 

+ 3P Q 2Q A 2A n n n - i n - l n-2 
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or 

(8) D _L, - P3D - Q (3P P O + 3P2P 2 + Q2)D 
n+1 n n n n n-i n n n-i n n-i 

= 3P Q Q (2P P +Q )A 2A + 3P2Q Q 2A 2A ' . n^n n-i n n-i ^n n-i n-2 n V ^ n - i n-2 n-i 

By reducing the index of n by 1 in (6), we can then solve (6) and (8) f o r 
A 2A . Then by substituting this expression in (7), we can obtain the desired 
difference equation. 

To find the fourth-order equation satisfied by 

kiUiVi + k2uiv2 + k3U2V! + k4u2v2 , 

we multiply (1) by (2) and let E = A B , to give 

(9) E ^ - P R E - Q S E = P S A B + R Q B A 4 
n+i n n n n n n-i n n n n-i n n n n-i 

= P S B (P A +Q A J n n n-i n-i n-i n-i n-2 
. + R Q A (R B / + & „B J n n n-i n-i n-i n-1- n-3 ' 

or 

(10) E _ L - P R E - ( P P S + R R Q + Q S ) E = P S Q B A 0 7 n+i n n n n n-i n n n-i n ^n n n-i n n n-i n-i n-2 
+ R Q S A B = P S Q A (R B + S B ) n n n-i n-i n-2 n n n-i n-2 n-2 n-2 n-2 n-3 
+ R Q S B (P A +Q A J n n n-i n-2 n-2 n-2 n-2 n-3 

or 

(11) E , - P R E - - ( P P - S + R R Q + Q S )E 4 n+i n n n n n-i n n n-i n n n n-l 
- (P S Q R + R Q S P )E 0 n n*n-i n-2 n^n n-i n-2 n-2 

= P Q S S A B + R S O Q B A n n-i n n-2 n-2 n-3 n n-l n n-2 n-2 n-3 

By now reducing the index n by 2 in (9) and by 1 in (10), we can then eliminate 
A B n and n-2 n-3 
ence equation. 
A B n and B 0A from (9), (10), and (11), to obtain the desired differ n-2 n-3 n-2 n-3 
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If here P , Q , R , S are independent of n, the equations simplify 
and the elimination is rather simple. This special case gives a solution to 
part (i) of proposed problem H-127 by M. N. S. Swamy (Fibonacci Quarterly, 
Feb. , 1968, p. 51), i. e . , "The Fibonacci polynomials are defined by 

fn+1fe> = xfn(x), n > 2 , 

fi(x) = 1 and f2(x) = x . 

If z = f (x)f (y), then show that (i) z satisfies the recurrence relation 

z , A - xyz LO - (x2 + y2 + 2)z , - xyz , + z = 0 . fr 
n+4 J n+3 J n+2 J n+i n 

We now extend Bellmanfs matrix method, with little change, to difference 
equations. 

F i rs t we give an analogous lemma for difference equations. 
Lemma. Let Y and Z denote, respectively, the solutions of the matrix 

difference equations 

EY - A(n)Y , Y(0) = I , 

EZ = ZB(n) , Z(0) = I , 

then the solution of 

EX = A(n)XB(n) , X(0) = C , 

is given by X = YCZ. (Here EY(n) = Y(n + 1)). An immediate proof follows 
by substitution. 

We now apply this result to finding the third-order linear difference equa-
tions whose general solution is ciuf + 2c2U;]iU2 + C3UJ5 where uj and u2 are 
linearly independent solutions of 

(12) < E2 + p(n)E + q(n) U = 0 . 
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Without loss of generality, let u^ and u2 be determined boundary conditions 

u i ] n = 0 = . 1 , EUi]n=o = 0 , 

u2]n=o = ° > EU2]n=o = 1 • 

Setting Eu = v, (12) is equivalent to 

Eu 
Ev 

v , 
-pv - qu 

If we now let 

A(n) = 0 1 
-q(n) -p(n) 

The matrix solution of 

is given by 

Eu = A(n)U , U(0) = I , 

U = 
Uj(n) u2(n) 

Euj(n) Eu2(n) 

and the solution of 

EV = VA(n) , V(0) = I , 

by V = U , the transpose of U. From our lemma, the solution of 

(13) EX = AXA , X(0) = C , 

is given by X = UCU . Taking C to be the symmetric matrix 
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c l c 2 

II C2 c 3 || 

we see that X is given by 

II X l X 2 II 
X = 

II X 2 X 3 II 
where 

2 2 
Xi = CjUi + 2c 2 UiU2 + C3U2 , 

X2 = C-iU-iEUi + C2(UjEU2 + ^ E U j ) + C3U2EU2 , 

x3 = c{En\ + 2c2(Eu1)(Eu2) + C3EU2 . 

Equation (13) can be written as 

Exj_ EX21 

Ex2 Ex3 
= 

0 1 

1 -q -p i- j * l x 2 

1 x 2 ^ 3 
8 

1 0 -q 

1 -Pi 

and which is also equivalent to the system 

Exi = x3 , 

Ex2 = qx2 - px3 , 

Ex3 = q2Xi + 2pqx2 + p2X3 . 

Eliminating x2 and x3, we obtain the third-order linear difference equation 
corresponding to (5). Similarly;, eliminating xj and x2, we obtain the equation 

2 2 

whose general solutionis CJEUJ + 2c2(Eui)(Eu2) + c3Eu2; eliminating xt an4 
X3? we obtain the equation whose general solution is 

CiUiEui + c2(uiEu2 + u2Eui) + C3U3EU3 • 
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In stating our lemma, we ignored any discussion of the dimensionality of 
Y and Z. It is clear that the result is valid if A(n) and Y are r x r ma-
trices, B(n) and z s x s matrices, and C and X r x s matrices. 

Using the same technique as before, but with much more computation, 
we can obtain the linear difference equation of order r s whose solutions are 
the products of order r and one of order s. 
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(continued from p. 85.) 

4. REMARKS 

Generalizing these famous conjectures leads to a multitude of conjectures 
in the Gaussian Integers. Some such as the infinitude of twin primes appears 
easier to settle and some such as the quadruples of primes seem less attain-
able than the real case does. 

See p. 80 for a Firs t Quadrant Graph of Gaussian Primes. 
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