ON THE LINEAR DIFFERENCE EQUATION WHOSE SOLUTIONS ARE THE

 PRODUCTS OF SOLUTIONS OF TWO GIVEN LINEAR DIFFERENCE EQUATIONSMURRAY S. KLAMKIN

Scientific Laboratory, Ford Motor Company, Dearborn, Michigan
It was shown by Appell [1] that if u_{1} and u_{2} denote two linearly independent solutions of

$$
\left\{\mathrm{D}^{2}+\mathrm{p}(\mathrm{t}) \mathrm{D}+\mathrm{q}(\mathrm{t})\right\} \mathrm{y}=0
$$

then $u_{1}^{2}, u_{1} u_{2}, u_{2}^{2}$ denote three linearly independent solutions of the third-order linear differential equation

$$
\left\{D^{3}+3 p D^{2}+\left(2 p^{2}+p^{\prime}+4 q\right) D+\left(4 p q+2 q^{\prime}\right)\right\} y=0
$$

Watson [2] shows that if

$$
\left\{\mathrm{D}^{2}+\mathrm{I}\right\} \mathrm{v}=0, \quad\left\{\mathrm{D}^{2}+\mathrm{J}\right\} \mathrm{w}=0
$$

then $\mathrm{y}=\mathrm{vw}$ satisfies the fourth-order differential equation

$$
D\left\{\frac{y^{\prime \prime}+2(I+J) y^{\prime}+\left(I^{\prime}+J^{\prime}\right) y}{I-J}\right\}=-(I-J) y, \quad(I \neq J) .
$$

Bellman [3] gives a matrix method for obtaining Appell's result and notes that the method can be used to find the linear differential equation of order mn whose solutions are the products of the solutions of a linear differential equation of order m and one of order n.

We now obtain analogous results for linear difference equations,
Let $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ denote sequences defined by the second-order linear difference equations
(1)

$$
A_{n+1}=P_{n} A_{n}+Q_{n} A_{n-1}
$$

$$
\begin{equation*}
B_{n+1}=R_{n} B_{n}+S_{n} B_{n-1} \tag{2}
\end{equation*}
$$

Nov. 1968 ON THE LINEAR DIFFERENCE EQUATION WHOSE SOLUTIONS DIFFERENCE EQUATIONS
where $A_{0}, A_{1}, B_{0}, B_{1}$ are arbitrary and $P_{n}, Q_{n}, R_{n}, S_{n}$ are given.
If u_{1} and u_{2}, v_{1} and v_{2} denote pairs of linearly independent solutions of (1) and (2), respectively, then we first obtain the third-order linear difference equation whose solution is given by

$$
\mathrm{k}_{1} \mathrm{u}_{1}^{2}+\mathrm{k}_{2} \mathrm{u}_{1} \mathrm{u}_{2}+\mathrm{k}_{3} \mathrm{u}_{2}^{2}
$$

where the k_{i}^{\prime} 's are constants. Squaring (1) and letting $C_{n}=A_{n}^{2}$, we obtain

$$
\begin{equation*}
C_{n+1}=P_{n}^{2} C_{n}+Q_{n}^{2} C_{n-1}+2 P_{n} Q_{n} A_{n} A_{n-1} \tag{3}
\end{equation*}
$$

or
(4)

$$
\begin{aligned}
C_{n+1}-P_{n}^{2} C_{n}-Q_{\bar{n}}^{2} C_{n-1} & =2 P_{n} Q_{n} A_{n-1}\left(P_{n-1} A_{n-1}+Q_{n-1} A_{n-2}\right) \\
& =2 P_{n} P_{n-1} Q_{n} C_{n-1}+2 P_{n} Q_{n} Q_{n-1} A_{n-1} A_{n-2}
\end{aligned}
$$

By decreasing the index n by 1 in (3), we can eliminate $A_{n-1} A_{n-2}$ to obtain

$$
\begin{align*}
P_{n-1} C_{n+1}=P_{n}\left(P_{n} P_{n-1}+Q_{n}\right) C_{n} & +P_{n-1} Q_{n}\left(P_{n} P_{n-1}+Q_{n}\right) C_{n-1} \tag{5}\\
& -P_{n} Q_{n} Q_{n-1}^{2} C_{n-2}
\end{align*}
$$

We now obtain the fourth-order equation whose solution is given by $k_{1} u_{1}^{3}$ $+k_{1} u_{1}^{3}+k_{2} u_{1}^{2} u_{2}+k_{3} u_{1} u_{2}^{2}+k_{4} u_{2}^{3}$. Cubing (1) and letting $D_{n}=A_{n}^{3}$, we obtain

$$
\begin{align*}
D_{n+1}-P_{n}^{3} D_{n}-Q_{n}^{3} D_{n-1} & =3 P_{n}^{2} Q_{n} A_{n}^{2} A_{n-1}+3 P_{n} Q_{n}^{2} A_{n} A_{n-1}^{2} \tag{6}\\
& =3 P_{n}^{2} Q_{n} A_{n}^{2} A_{n-1}+3 P_{n} Q_{n}^{2} A_{n-1}^{2}\left(P_{n-1} A_{n-1}+Q_{n-1} A_{n-2}\right)
\end{align*}
$$

or
(7) $D_{n+1}-P_{n}^{3} D_{n}-Q_{n}^{2}\left(3 P_{n} P_{n-1}+Q_{n}\right) D_{n-1}=3 P_{n}^{2} Q_{n} A_{n}^{2} A_{n-1}$

$$
+3 P_{n} Q_{n}^{2} Q_{n-1} A_{n-1}^{2} A_{n-2}=3 P_{n}^{2} Q_{n} A_{n-1}\left(P_{n-1} A_{n-1}+Q_{n-1} A_{n-2}\right)^{2}
$$

$$
+3 P_{n} Q_{n}^{2} Q_{n-1} A_{n-1}^{2} A_{n-2}
$$

88 ON THE LINEAR DIFFERENCE EQUATION WHOSE SOLUTIONS ARE [Nov.
or

$$
\begin{align*}
D_{n+1} & -P_{n}^{3} D_{n}-Q_{n}\left(3 P_{n} P_{n-1} Q_{n}+3 P_{n}^{2} P_{n-1}^{2}+Q_{n}^{2}\right) D_{n-1} \tag{8}\\
& =3 P_{n} Q_{n} Q_{n-1}\left(2 P_{n} P_{n-1}+Q_{n}\right) A_{n-1}^{2} A_{n-2}+3 P_{n}^{2} Q_{n} Q_{n-1}^{2} A_{n-2}^{2} A_{n-1}
\end{align*}
$$

By reducing the index of n by 1 in (6), we can then solve (6) and (8) for $A_{n-1}^{2} A_{n-2}$. Then by substituting this expression in (7), we can obtain the desired difference equation.

To find the fourth-order equation satisfied by

$$
k_{1} u_{1} v_{1}+k_{2} u_{1} v_{2}+k_{3} u_{2} v_{1}+k_{4} u_{2} v_{2}
$$

we multiply (1) by (2) and let $\mathrm{E}_{\mathrm{n}}=\mathrm{A}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}}$, to give
(9) $E_{n+1}-P_{n} R_{n} E_{n}-Q_{n} S_{n} E_{n-1}=P_{n} S_{n} A_{n} B_{n-1}+R_{n} Q_{n} B_{n} A_{n-1}$

$$
\begin{aligned}
= & P_{n} S_{n} B_{n-1}\left(P_{n-1} A_{n-1}+Q_{n-1} A_{n-2}\right) \\
& +R_{n} Q_{n} A_{n-1}\left(R_{n-1} B_{n-1}^{\prime}+S_{n-1} B_{n-3}\right)
\end{aligned}
$$

or

$$
\begin{align*}
E_{n+1} & -P_{n} R_{n} E_{n}-\left(P_{n} P_{n-1} S_{n}+R_{n} R_{n-1} Q_{n}+Q_{n} S_{n}\right) E_{n-1}=P_{n} S_{n} Q_{n-1} B_{n-1} A_{n-2} \tag{10}\\
& +R_{n} Q_{n} S_{n-1} A_{n-1} B_{n-2}=P_{n} S_{n} Q_{n-1} A_{n-2}\left(R_{n-2} B_{n-2}+S_{n-2} B_{n-3}\right) \\
& +R_{n} Q_{n} S_{n-1} B_{n-2}\left(P_{n-2} A_{n-2}+Q_{n-2} A_{n-3}\right)
\end{align*}
$$

or
(11) $\quad E_{n+1}-P_{n} R_{n} E_{n}-\left(P_{n} P_{n-1} S_{n}+R_{n} R_{n-1} Q_{n}+Q_{n} S_{n}\right) E_{n-1}$

$$
-\left(P_{n} S_{n} Q_{n-1} R_{n-2}+R_{n} Q_{n} S_{n-1} P_{n-2}\right) E_{n-2}
$$

$$
=P_{n} Q_{n-1} S_{n} S_{n-2} A_{n-2} B_{n-3}+R_{n} S_{n-1} Q_{n} Q_{n-2} B_{n-2} A_{n-3} .
$$

By now reducing the index n by 2 in (9) and by 1 in (10), we can then eliminate $A_{n-2} B_{n-3}$ and $B_{n-2} A_{n-3}$ from (9), (10), and (11), to obtain the desired difference equation.

EQUATIONS

If here $P_{n}, Q_{n}, R_{n}, S_{n}$ are independent of n, the equations simplify and the elimination is rather simple. This special case gives a solution to part (i) of proposed problem H-127 by M. N. S. Swamy (Fibonacci Quarterly, Feb., 1968, p. 51), i. e., "The Fibonacci polynomials are defined by

$$
\begin{gathered}
f_{n+1}(x)=x_{n}(x), \quad n \geq 2 \\
f_{1}(x)=1 \quad \text { and } f_{2}(x)=x
\end{gathered}
$$

If $z_{r}=f_{r}(x) f_{r}(y)$, then show that (i) z_{r} satisfies the recurrence relation

$$
z_{n+4}-x y z_{n+3}-\left(x^{2}+y^{2}+2\right) z_{n+2}-x y z_{n+1}+z_{n}=0 . \quad "
$$

We now extend Bellman's matrix method, with little change, to difference equations.

First we give an analogous lemma for difference equations.
Lemma. Let Y and Z denote, respectively, the solutions of the matrix difference equations

$$
\begin{aligned}
& \mathrm{EY}=\mathrm{A}(\mathrm{n}) \mathrm{Y}, \quad \mathrm{Y}(0)=\mathrm{I} \\
& \mathrm{EZ}=\mathrm{ZB}(\mathrm{n}), \quad \mathrm{Z}(0)=\mathrm{I}
\end{aligned}
$$

then the solution of

$$
\mathrm{EX}=\mathrm{A}(\mathrm{n}) \mathrm{XB}(\mathrm{n}), \quad \mathrm{X}(0)=\mathrm{C}
$$

is given by $X=Y C Z$. (Here $E Y(n)=Y(n+1)$). An immediate proof follows by substitution.

We now apply this result to finding the third-order linear difference equations whose general solution is $c_{1} u_{1}^{2}+2 c_{2} u_{1} u_{2}+c_{3} u_{2}^{2}$ where u_{1} and u_{2} are linearly independent solutions of

$$
\begin{equation*}
\left\{\mathrm{E}^{2}+\mathrm{p}(\mathrm{n}) \mathrm{E}+\mathrm{q}(\mathrm{n})\right\} \mathrm{u}=0 \tag{12}
\end{equation*}
$$

90 ON THE LINEAR DIFFERENCE EQUATIONS WHOSE SOLUTIONS ARE [Nov.

Without loss of generality, let u_{1} and u_{2} be determined boundary conditions

$$
\begin{aligned}
& \left.\left.\mathrm{u}_{1}\right]_{\mathrm{n}=0}=1, \quad \mathrm{EU} \mathrm{U}_{1}\right]_{\mathrm{n}=0}=0, \\
& \left.\left.\mathrm{u}_{2}\right]_{\mathrm{n}=0}=0, \quad \mathrm{EU}_{2}\right]_{\mathrm{n}=0}=1 .
\end{aligned}
$$

Setting $\mathrm{Eu}=\mathrm{v}$, (12) is equivalent to

$$
\begin{aligned}
& \mathrm{Eu}=\mathrm{v} \\
& \mathrm{Ev}=-\mathrm{pv}-\mathrm{qu}
\end{aligned}
$$

If we now let

$$
A(n)=\left\|\begin{array}{cc}
0 & 1 \\
-q(n) & -p(n)
\end{array}\right\|
$$

The matrix solution of

$$
\mathrm{Eu}=\mathrm{A}(\mathrm{n}) \mathrm{U}, \quad \mathrm{U}(0)=\mathrm{I},
$$

is given by

$$
\mathrm{U}=\left\|\begin{array}{lr}
\mathrm{u}_{1}(\mathrm{n}) & \mathrm{u}_{2}(\mathrm{n}) \\
E u_{1}(\mathrm{n}) & E u_{2}(\mathrm{n})
\end{array}\right\|
$$

and the solution of

$$
\mathrm{EV}=\mathrm{VA}(\mathrm{n})^{\mathrm{T}}, \quad \mathrm{~V}(0)=\mathrm{I}
$$

by $V=U^{T}$, the transpose of U. From our lemma, the solution of

$$
\begin{equation*}
E X=A X A^{T}, \quad X(0)=C \tag{13}
\end{equation*}
$$

is given by $\mathrm{X}=\mathrm{UCU}^{\mathrm{T}}$. Taking C to be the symmetric matrix

$$
\mathrm{C}=\left\|\begin{array}{ll}
\mathrm{c}_{1} & \mathrm{c}_{2} \\
\mathrm{c}_{2} & \mathrm{c}_{3}
\end{array}\right\|
$$

we see that X is given by

$$
X=\left\|\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right\|
$$

where

$$
\begin{gathered}
x_{1}=c_{1} u_{1}^{2}+2 c_{2} u_{1} u_{2}+c_{3} u_{2}^{2} \\
x_{2}=c_{1} u_{1} E u_{1}+c_{2}\left(u_{1} E u_{2}+u_{2} E u_{1}\right)+c_{3} u_{2} E u_{2} \\
x_{3}=c_{1} E u_{1}^{2}+2 c_{2}\left(E u_{1}\right)\left(E u_{2}\right)+c_{3} E u_{2}^{2}
\end{gathered}
$$

Equation (13) can be written as

$$
\left\|\begin{array}{ll}
E x_{1} & E x_{2} \\
E x_{2} & E x_{3}
\end{array}\right\|=\left\|\begin{array}{ll}
0 & 1 \\
-q & -p
\end{array}\right\| \cdot\left\|\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right\| \cdot\left\|\begin{array}{ll}
0 & -q \\
1 & -p
\end{array}\right\|
$$

and which is also equivalent to the system

$$
\begin{aligned}
& E x_{1}=x_{3} \\
& E x_{2}=q x_{2}-p x_{3} \\
& E x_{3}=q^{2} x_{1}+2 p q x_{2}+p^{2} x_{3}
\end{aligned}
$$

Eliminating x_{2} and x_{3}, we obtain the third-order linear difference equation corresponding to (5). Similarly, eliminating x_{1} and x_{2}, we obtain the equation whose general solution is $c_{1} E u_{1}^{2}+2 c_{2}\left(E u_{1}\right)\left(E u_{2}\right)+c_{3} E u_{2}^{2}$; eliminating x_{1} and x_{3}, we obtain the equation whose general solution is

$$
c_{1} u_{1} E u_{1}+c_{2}\left(u_{1} E u_{2}+u_{2} E u_{1}\right)+c_{3} u_{3} E u_{3}
$$

ON THE LINEAR DIFFERENCE EQUATIONS WHOSE SOLUTIONS DIFFERENCE EQUATIONS

In stating our lemma, we ignored any discussion of the dimensionality of Y and Z. It is clear that the result is valid if $A(n)$ and Y are $r \times r$ matrices, $B(n)$ and $z s \times s$ matrices, and C and $X r x s$ matrices.

Using the same technique as before, but with much more computation, we can obtain the linear difference equation of order rs whose solutions are the products of order r and one of order s.

REFERENCES

1. C. Appell, Comptes Rendus, XCI (1880), pp. 211-214.
2. G. N. Watson, Bessell Functions, MacMillan, N. Y., 1948, pp. 145-146.
3. R. Bellman, "On the Linear Differential Equations whose Solutions are the Products of Solutions of Two Given Linear Differential Equations, " Boll. Un. Mat. Ital. (3) 12 (1957), pp. 12-15.
(continued from p. 85.)

4. REMARKS

Generalizing these famous conjectures leads to a multitude of conjectures in the Gaussian Integers. Some such as the infinitude of twin primes appears easier to settle and some such as the quadruples of primes seem less attainable than the real case does.

See p. 80 for a First Quadrant Graph of Gaussian Primes.

5. REFERENCES

1. J. H. Jordan and C. J. Potratz, "Complete Residue Systems in the Gaussian Integers, " Mathematics Magazine, Vol. 38, No. 1, pp. 1-12 (1965).
