LAH NUMBERS FOR FIBONACCI AND LUCAS POLYNOMIALS

SELMO TAUBER
Portland State College, Portland, Oregon

I. INTRODUCTION

In [1] the Fibonacci and Lucas Polynomials are defined as follows:

(1)
$$f_0(x) = 0$$
, $f_1(x) = 1$, $f_{n+2}(x) = xf_{n+1}(x) + f_n(x)$, $n \ge 0$,

and,

(2)
$$\operatorname{Luc}_{0}(x) = 2$$
, $\operatorname{Luc}_{n}(x) = f_{n+1}(x) + f_{n-1}(x)$, $n > 0$.

It is easily seen that

(3)
$$f_n(x) = \sum_{m=0}^{\lfloor n/2 \rfloor} \operatorname{Fi}_n^{n-2m} x^{n-2m-1} = \sum_{s=0}^n \operatorname{Fi}_n^s x^{s-1} ,$$

where n and s have same parity (n - s - 2k), [n/2] is the largest integer contained in n/2, i.e.,

(4)
$$[n/2] = \begin{cases} (n/2) & \text{if n is even} \\ (n-1)/2 & \text{if n is odd} \end{cases}$$

and,

(5)
$$Fi_{n}^{n-2m} = {n-m-1 \choose m}, \quad Fi_{n}^{s} = {n+s-2 \choose (n-s)/2},$$

$$Fi_{n}^{s} = 0, \quad \text{for } s < 1, \quad n < 1, \quad n < s, \quad n-s = 2k+1.$$

It follows from (2) that

(6)
$$\operatorname{Luc}_{n}(x) = \sum_{m=0}^{\left[\binom{(n+1)/2}{2}\right]} \operatorname{Lu}_{n}^{n-2m} x^{n-2m} = \sum_{s=0}^{n} \operatorname{Lu}_{n}^{s} x^{s},$$

where n and s have same parity (n - s = 2k),

and,

(7)
$$\operatorname{Lu}_{n}^{n-2m} = \binom{n-m}{m} + \binom{n-m-1}{m-1}, \quad \operatorname{Lu}_{n}^{s} = n \left(\frac{n+s}{2}-1\right)! / \left(\frac{n-s}{2}\right)! s!,$$

$$Lu_{n}^{S}$$
 = 0, for $n <$ 0, $s <$ 0, $n <$ s, n - s = $2k + 1$, and $Lu \S$ = 2 .

2. FIBONACCI AND LUCAS COEFFICIENTS OF THE SECOND KIND

The numbers Fi_n^S and Lu_n^S will be called Fibonacci and Lucas coefficients of the first kind. According to [2], [3], and [4] we call the numbers fi_n^S and lu_n^S , defined hereafter, Fibonacci and Lucas coefficients of the second kind:

(8)
$$x^{n} = \sum_{m=0}^{\left[\frac{(n+1)}{2}\right]} fi_{n+1}^{n+1-2m} f_{n+1-2m}(x) = \sum_{s=0}^{n+1} fi_{n+1}^{s} f_{s}(x) ,$$

where n+1-s=2k, $fi_n^s=0$, for n-s=2k+1, n<1, s<1, n< s,

(9)
$$x^{n} = \sum_{m=0}^{\lfloor n/2 \rfloor} lu_{n}^{n-2m} Luc_{n-2m}(x) = \sum_{s=0}^{n} lu_{n}^{s} Luc_{s}(x) ,$$

where n-s=2k, $lu_n^S=0$, for n-s=2k+1, $n\leq 0$, $s\leq 0$, $n\leq s$.

According to the general theory seen in [2], [3], and [4], the coefficients Fi_n^s , fi_n^s , on the one hand, and the coefficients Lu_n^s , lu_n^s , on the other hand, are quasi-orthogonal, i.e.,

(10)
$$\sum_{k=0}^{(n-m)/2} \ \mathrm{Fi}_n^{n-2k} \ \mathrm{fi}_{n-2k}^m = \ \delta_n^m \ \text{,}$$

(11)
$$\sum_{k=0}^{(n-m)/2} Lu_n^{n-2k} lu_{n-2k}^m = \delta_n^m ,$$

where δ_n^m is the Kronecker-delta.

3. NUMERICAL VALUES AND RECURRENCE RELATIONS

Using (1) and (2) we obtain the following table of values for ${\rm Fi}_n^m$ and ${\rm Lu}_n^m$, limited here to $\,m,n \le 11$:

	m=	1	2	3	4	5	6	7	8	9	10	
n												
1		1										
2		0	1									
3		1	0	1								
4		0	$\dot{2}$	0	1							
5		1	0	3	0	1						$\mathrm{Fi}_{\mathrm{n}}^{\mathrm{m}}$
6		0	3	0	4	0	1					
7		1	0	6	0	5	0	1				
8		0	4	0	10	0	6	0	1			
9		1	0	10	0	15	0	7	0	1		
10		0	5	0	20	0	21	0	8	0	1	

It will be observed that the sum of coefficients in one row is equal to the Fibonacci number corresponding to its n, i.e., $f_n(1) = F_n$.

	m=	0	1	2	3	4	5	6	7	8	9	10
n												
0		2										
1		0	1									
2		2	0	1								
3		0	3	0	1							
4		2	0	4	0	1						_ m
5		0	5	0	5	0	1					$\operatorname{Lu}_{\mathbf{n}}^{\mathbf{m}}$
6		2	0	9	0	6	0	1				11
7		0	7	0	14	0	7	0	1			
8		2	0	16	0	20	0	8	0	1		
9		0	9	0	30	0	27	0	9	0	1	
10		2	0	25	0	50	0	35	0	10	0	1

It is easily seen that

(12)
$$Fi_n^m = Fi_{n-2}^m + Fi_{n-1}^{m-1} ,$$

which is satisfied by (5), as can be easily checked.

(13)
$$Lu_{n}^{m} = Lu_{n-2}^{m} + Lu_{n-1}^{m-1} ,$$

for n > 1, m > 1, but for m = n = 1 we have

$$Lu_1^1 = \frac{1}{2} Lu_0^0$$
.

It is necessary to introduce the function N(n) which is

(13a)
$$N(n) = \begin{cases} 1 & \text{if } n \neq 1 \\ 1/2 & \text{if } n = 1 \end{cases}$$

which allows us to write

(13b)
$$Lu_{n}^{m} = Lu_{n-2}^{m} + N(n)Lu_{n-1}^{m-1}$$

for any integer m and n.

According to (9) and (12) of [4] it follows that taking p=1, k=2, the fi_n^m -coefficients satisfy the relation

(14)
$$fi_n^m = fi_{n-1}^{m-1} - f_{n-1}^{m+1} ,$$

and the lu_{n}^{m} -coefficients the relation

(15)
$$lu_n^m = \frac{1}{N(m)} lu_{n-1}^{m-1} - \frac{1}{N(m+2)} lu_{n-1}^{m+1} ,$$

but since $m \ge 2$, N(m + 2) = 1, thus

The numerical values of the Fibonacci and Lucas coefficients of the second kind can be obtained either from (10) and (11) or from (14) and (15a). Thus, for $n,m\leq 10$.

	n=	1	2	3	4	5	6	7	8	9	10	
\mathbf{m}												
1		1										
1 2 3 4 5		0	1									
3		-1	0	1								
4		0	-2	0	1						700	
5		2	0	-3	0	1					$\mathbf{fi}_{\mathbf{n}}^{\mathbf{m}}$	
$6\\7$		0	5	0	-4	0	1				11	
7		- 5	0	9	0	-5	0	1				
8 9		0	-14	0	14	0	-6	0	1			
9		14	0	-2 8	0	20	0	-7	0	1		
10		0	42	0	-4 8	0	27	0	-8	0	1	
	n=	0	1	2	3	$\overline{4}$	5	6	7	8	9	10
0	n=	1/2	1	2	3	4	5	6	7	8	9	10
0 1	n=	$\begin{array}{c} 0\\1/2\\0\end{array}$	1 1	2	3	4	5	6	7	8	9	10
0 1 2	n=	1/2		2 1	3	4	5	6	7	8	9	10
3	n=	1/2 0 -1 0	1		3 1	4	5	6	7	8	9	10
$\frac{3}{4}$	n=	1/2 0 -1	1 0	1		4 1	5	6	7	8	9	
0 1 2 3 4 5	n=	1/2 0 -1 0	1 0 -3	1 0	1		5	6	7	8	9	
$\frac{3}{4}$	n=	1/2 0 -1 0 3	1 0 -3 0	1 0 -4	$\frac{1}{0}$	1		6	7	8	9	lu _n .
3 4 5 6 7	n=	1/2 0 -1 0 3 0	1 0 -3 0 10	1 0 -4 0	1 0 -5	$\frac{1}{0}$	1		7	8	9	
3 4 5 6 7 8	n=	1/2 0 -1 0 3 0 -10	1 0 -3 0 10	1 0 -4 0 15	1 0 -5 0	1 0 -6	1 0	1		8		
3 4 5 6 7	n=	1/2 0 -1 0 3 0 -10 0	1 0 -3 0 10 0 -35	1 0 -4 0 15	1 0 -5 0 21	1 0 -6 0	1 0 -7	1 0	1			

It is easily seen that for n and m having same parity, i.e., n-m = 2k, the Fibonacci and Lucas coefficients of the second kind are

(16)
$$fi_n^m = (-1)^{(n-m)/2} \binom{n}{(n-m)/2} m/n ,$$

and

(17)
$$lu_n^m = (-1)^m \binom{n}{m} N (m+1) ,$$

where N(m + 1), according to (13a) equals 1 if $m \neq 0$, and 1/2 if m = 0.

4. LAH NUMBERS

According to [5] and [6] the Lucas-Fibonacci and the Fibonacci-Lucas Lah numbers are defined by the two relations

(18)
$$Luc_{n}(x) = \sum_{m=0}^{n+1} \mu_{n}^{m} f_{m}(x),$$

and

(19)
$$f_{n}(x) = \sum_{k=0}^{\left[\binom{(n-1)/2}{2}\right]} \lambda_{n}^{n-1-2k} \operatorname{Lue}_{n-1-2k}(x)$$
$$= \sum_{m=0}^{n-1} \lambda_{n}^{m} \operatorname{Lue}_{m}(x) ,$$

where n and m are of the same parity, i.e., n - m = 2p.

According to the definition of Lucas polynomials given by (2) it follows that

(20)
$$\mu_{n}^{m} = \begin{cases} 0 & \text{if } m \neq n \pm 1 \\ 1 & \text{if } m = n \pm 1 \end{cases}$$

and

(21)
$$\lambda_n^{\rm m} = (-1)^{(n-m-1)/2} N(m+1) ,$$

where n and m are of opposite parity, i.e., n - m = 2k + 1, and N(m) is defined by (13a).

According to (8) and (9) of [5], and (3a) and (3b) of [6] we obtain

(22)
$$\lambda_n^m = \sum_{s=m}^n \operatorname{Fi}_n^s \operatorname{lu}_{s-1}^m = (-1)^{(n-m-1)/2} \operatorname{N}(m+1) ,$$

where n and m have different parity, i.e., n - m = 2k + 1, and

(23)
$$\sum_{s=m-1}^{n} Lu_{n}^{s} fi_{s+1}^{m} = \mu_{n}^{m} = \begin{cases} 0 & \text{if } m \neq n \pm 1 \\ 1 & \text{if } m = n \pm 1 \end{cases}$$

REFERENCES

- 1. V. E. Hoggatt, Jr., private communication of Nov. 17, 1965.
- 2. S. Tauber, "On Quasi-orthogonal Numbers," Amer. Math. Monthly, 69 (1962), 365-372.
- 3. H. W. Gould, "The Construction of Orthogonal and Quasi-Orthogonal Number Sets," Amer. Math. Monthly, 72 (1965), 591-601.
- 4. S. Tauber, "On Two Classes of Quasi-Orthogonal Numbers," Amer. Math. Monthly, 72 (1965), 602-606.
- 5. S. Tauber, "On Generalized Lah Numbers," Proc. Edinburgh Math. Soc., (2) 14 (1965), 229-232.
- 6. S. Tauber, "Lah Numbers for R-Polynomials," <u>Fibonacci Quarterly</u>, this issue, p. 88.