LAH NUMBERS FOR R-POLYNOMIALS

SELMO TAUBER

Portland State College, Portland, Oregon

1. INTRODUCTION

According to [1], [2], and [3], given two sequences of polynomials, $\mathrm{P}_{1}(\mathrm{x}, \mathrm{n})$ and $\mathrm{P}_{2}(\mathrm{x}, \mathrm{n}), \mathrm{n}=0,1,2, \cdots$.

$$
\begin{equation*}
P_{k}(x, n)=\sum_{m=0}^{n} C_{k, n}^{m} x^{m}, \quad k=1,2 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C}_{\mathrm{k}, \mathrm{n}}^{\mathrm{m}}=0, \quad \text { for } \mathrm{n}<\mathrm{m}, \mathrm{~m}<0, \mathrm{n}<0 \tag{1a}
\end{equation*}
$$

and the inverse expansion

$$
\begin{equation*}
x^{n}=\sum_{m=0}^{n} D_{k, n}^{m} P_{k}(x, m) \quad k=1,2 \tag{2}
\end{equation*}
$$

$$
\mathrm{D}_{\mathrm{k}, \mathrm{n}}^{\mathrm{m}}=0, \quad \text { for } \mathrm{n}<\mathrm{m}, \quad \mathrm{~m}<0, \mathrm{n}<0
$$

the coefficients $C_{k, n}^{m}$ and $D_{k, n}^{m}$ are called respectively Generalized Stirling Numbers of First and Second Kind of the polynomials $P_{k}(x, n)$. Examples of such numbers can be found in [3], [4], and [5].

Let then

$$
\begin{equation*}
P_{k}(x, n)=\sum_{m=0}^{n} L_{k, h, n}^{m} P_{h}(x, m), \quad k, h=1,2, k \neq h, n=0,1,2, \cdots \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{L}_{\mathrm{k}, \mathrm{~h}, \mathrm{n}}^{\mathrm{m}}=0, \quad \text { for } \mathrm{n}<\mathrm{m}, \mathrm{~m}<0, \mathrm{n}<0 \tag{3a}
\end{equation*}
$$

More explicitly,

$$
\begin{aligned}
P_{k}(x, n) & =\sum_{s=0}^{n} C_{k, n}^{s} x^{s}=\sum_{s=0}^{n} C_{k, n}^{s} \sum_{m=0}^{s} D_{h, s}^{m} P_{h}(x, m) \\
& =\sum_{s=0}^{n} C_{k, n}^{s} \sum_{m=0}^{n} D_{h, s}^{m} P_{h}(x, m) \\
& =\sum_{m=0}^{n} P_{h}(x, m) \sum_{s=m}^{n} C_{k, n}^{s} D_{h, s}^{m},
\end{aligned}
$$

so that

$$
\begin{equation*}
\mathrm{L}_{\mathrm{k}, \mathrm{~h}, \mathrm{n}}=\sum_{\mathrm{s}=\mathrm{m}}^{\mathrm{n}} \mathrm{C}_{\mathrm{k}, \mathrm{n}}^{\mathrm{s}} \mathrm{D}_{\mathrm{h}, \mathrm{~s}}^{\mathrm{m}} \tag{3b}
\end{equation*}
$$

The coefficients $L_{k, h, n}^{m}$ are called Generalized Lah Numbers for the two sequences of polynomials P_{k} and $\mathrm{P}_{\mathrm{h}}, \mathrm{k} \neq \mathrm{h}, \mathrm{k}, \mathrm{h}=1,2$.

2. QUASI-ORTHOGONALITY

Under the conditions stated, the generalized Stirling numbers of first and second kind for a given sequence of polynomials $P_{k}(x, n)$ are said to quasiorthogonal to each other (cf. [3] if

$$
\begin{equation*}
\sum_{m=s}^{n} D_{k, n}^{m} C_{k, m}^{s}=\delta_{n}^{s} \tag{4}
\end{equation*}
$$

This result is proved in [3] for both the Q- and R-polynomials, but since the proof does not use the structure of the polynomials it is true for any sequence of polynomials as defined by (1).

Similarly the generalized Lah numbers for two sequences of polynomials P_{k} and P_{h} are quasi-orthogonal to the generalized Lah numbers for the sequences of polynomials P_{h} and P_{k}, $i_{\text {. }}$.,

$$
\sum_{m=s}^{n} L_{k, h, n}^{m} L_{h, k, m}^{s}=\delta_{n}^{S}
$$

This result is proved in [2] for the Q-polynomials, but here again the proof does notuse the structure of the polynomials, thus is valid for any two sequences of polynomials as defined by (1).

3. RECALL ABOUT R-POLYNOMIALS

In [2] we have studied the generalized Lah numbers for two sequences of Q-polynomials. We shall now study the same for R-polynomials as defined in [3], i. e.,

$$
\begin{gather*}
R(x, n)=\sum_{m=0}^{n} C_{n}^{m} x^{m} \tag{6}\\
R(x, n+1)=[K(n+1)+L(n+1) x] R(x, n) \tag{7}
\end{gather*}
$$

n

$$
+\sum_{m=0}[M(m+1)+N(m+2) x] C_{n}^{m} x^{m}
$$

$$
\begin{equation*}
R(x, 0)=K(0) \tag{8}
\end{equation*}
$$

$$
x^{n}=\sum_{m=0}^{n} D_{n}^{m} R(x, m)
$$

In order to simplify the results in [3] it was assumed that $L=1$. Letting $N(n+1)+1=P(n)$ it was proved that the numbers C_{n}^{m} and D_{n}^{m} satisfy the recurrence relations

$$
\begin{equation*}
C_{n}^{m}=[K(n)+M(m+1)] C_{n-1}^{m}+P(m) C_{n-1}^{m-1} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
D_{n}^{m}=-[K(m+1)+M(n)] D_{n-1}^{m} / P(n)+D_{n-1}^{m-1} / P(n) \tag{11}
\end{equation*}
$$

In the following we shall consider two sets of R-polynomials $R_{1}(x, n)$ and $R_{2}(x, n)$ and the corresponding generalized Stirling numbers $\left\{C_{1, n}^{m}, C_{2, n}^{m}\right\}$ and $\left\{D_{1, n}^{m}, D_{2, n}^{m}\right\}$ which all satisfy the conditions given in sections 1 and 2 . The generalized Lah-numbers for the two sequences are $L_{1,2, n}^{m}$ and $L_{2,1, n}^{m}$. They satisfy conditions (3a), (3b), and (5). We shall assume that $L_{1}(n)=L_{2}(n)=1$.

4. RECURRENCE RELATIONS

According to relations (6) through (9) we can write

$$
\begin{aligned}
R_{2}(x, n+1) & =\sum_{s=0}^{n+1} C_{2, n+1}^{m} x^{m} \\
& =\left[K_{2}(n+1)+x\right] R_{2}(x, n)+\sum_{s=0}^{n}\left[M_{2}(s+1)+N_{2}(s+2) x\right] C_{2, n}^{S} x^{s}
\end{aligned}
$$

and, according to the definition of the generalized Lah-numbers,

$$
R_{2}(x, n+1)=\sum_{m=0}^{n+1} L_{2,1, n+1} R_{1}(x, m)
$$

so that

$$
\begin{align*}
& \mathrm{n}+1 \quad \mathrm{n} \\
& \sum_{m=0} L_{2,1, n+1}^{m} R_{4}(x, m)=K_{2}(n+1) \sum_{m=0} L_{2,1, n}^{m} R_{1}(x, m) \tag{12}\\
& \text { n } \\
& +\sum_{m=0} L_{2,1, n}^{m} x R_{1}(x, m)
\end{align*}
$$

[Nov.
On the other hand we have

$$
\begin{aligned}
& R_{1}(x, m+1)=\left[K_{1}(m+1)+x\right] R_{1}(x, m) \\
& \quad+\sum_{p=0}^{m}\left[M_{1}(p+1)+N_{1}(p+2) x\right] C_{1, m}^{p} x^{p}
\end{aligned}
$$

thus

$$
\begin{align*}
x R_{1}(x, m)=R_{1}(x, m+1)- & K_{1}(m+1) R_{1}(x, m) \tag{13}\\
& m \\
& -\sum_{p=0}\left[M_{1}(p+1)+N_{1}(p+2) x\right] C_{1, m}^{p} x^{p}
\end{align*}
$$

Substituting (13) into (12), and reorganizing the last two terms with the help of (1a) and (2a), we obtain

$$
\begin{aligned}
& \mathrm{n}+1 \text { n } \\
& \sum_{m=0} L_{2,1, n+1}^{m} R_{1}(x, m)=K_{2}(n+1) \sum_{m=0}^{m} L_{2,1, n}^{m} R_{1}(x, m) \\
& \begin{aligned}
&+\sum_{m=0}^{n} L_{2,1, n}^{m}\left[R_{1}(x, m+1)-K_{1}(m+1)\right. R_{1}(x, m) \\
& m \\
&\left.-\sum_{p=0}\left[M_{1}(p+1)+N_{1}(p+2) x\right] C_{1, m}^{p} x^{p}\right]
\end{aligned} \\
& +\sum^{n} \mathrm{R}_{1}(\mathrm{x}, \mathrm{~m}) \stackrel{\mathrm{n}}{\sum} \mathrm{M}_{2}(\mathrm{~s}+1) \mathrm{C}_{2, \mathrm{n}}^{\mathrm{S}} \mathrm{D}_{1, \mathrm{~S}}^{\mathrm{m}} \\
& m=0 \quad s=m \\
& \mathrm{n}+1 \quad \mathrm{n} \\
& +\sum_{m=0} R_{1}(x, m) \sum_{s=m-1} N_{2}(s+2) C_{2, n}^{S} D_{1, s+1}^{m},
\end{aligned}
$$

or, interchanging the indices m and s,
(14)

$$
\begin{aligned}
& \sum_{m=0}^{n+1} L_{2,1, n+1}^{m} R_{1}(x, m)=K_{2}(n+1) \sum_{m=0}^{n} L_{2,1, n}^{m} R_{1}(x, m) \\
& +\sum_{m=0}^{n} L_{2,1, n}^{m} R_{1}(x, m+1)-\sum_{m=0}^{n} L_{2,1, n}^{m} K_{1}(m+1) R_{1}(x, m) \\
& -\sum_{S=0}^{n} L_{2,1, n}^{S} \sum_{p=0}^{S} M_{1}(p+1) C_{1, S}^{p} \sum_{m=0}^{p} D_{1, p}^{m} R_{1}(x, m) \\
& -\sum_{S=0}^{n} L_{2,1, n}^{S} \sum_{p=0}^{S} N_{1}(p+2) C_{1, S_{i}}^{p} \sum_{m=0}^{p+1} D_{1, p+1}^{m} R_{1}(x, m) \\
& +\sum_{m=0}^{n} R_{1}(x, m) \sum_{S=m}^{n} M_{2}(s+1) C_{2, n}^{S} D_{1, s}^{m}+\sum_{m=0}^{n+1} R_{1}(x, m) \sum_{S=m-1}^{n} N_{2}(S+2) C_{2, n}^{S} D_{1, s+1}^{m}
\end{aligned}
$$

The fourth and fifth quantities on the right-hand side of (14) can be written as follows:

$$
\begin{align*}
& \sum_{S=0}^{n} L_{2,1, n}^{S} \sum_{p=0}^{S} M_{1}(p+1) C_{1, s}^{p} \sum_{m=0}^{p} D_{1, p}^{m} R_{1}(x, m) \tag{15}\\
& \quad=\sum_{m=0}^{n} R_{1}(x, m) \sum_{S=0}^{n} L_{2,1, n}^{S} \sum_{p=m}^{S} M_{1}(p+1) C_{1, s}^{p} D_{1, p}^{m}
\end{align*}
$$

$$
\begin{align*}
& \sum_{S=0}^{n} L_{2,1, n}^{S} \sum_{p=0}^{S} N_{1}(p+2) C_{1, S}^{p} \sum_{m=0}^{p+1} D_{1, p+1}^{m} R_{1}(x, m) \tag{16}\\
& =\sum_{m=0}^{n+1} R_{1}(x, m) \sum_{S=0}^{n} L_{2,1, n}^{S} \sum_{p=m-1}^{S} N_{1}(p+2) C_{1, s}^{p} D_{1, p+1}^{m}
\end{align*}
$$

Substituting (15) and (16) into (14) we obtain by equating the coefficients of $R_{1}(x, m)$

$$
\begin{equation*}
\mathrm{L}_{2,1, \mathrm{n}+1}^{\mathrm{m}}=\mathrm{K}_{2}(\mathrm{n}+1)-\mathrm{K}_{1}(\mathrm{~m}+1) \mathrm{L}_{2,1, \mathrm{n}}^{\mathrm{m}}+\mathrm{L}_{2,1, \mathrm{n}}^{\mathrm{m}-1} \tag{17}
\end{equation*}
$$

$$
-\sum_{S=m-1}^{n} L_{2,1, n}^{S} \sum_{p=m}^{S} M_{1}(p+1) C_{1, s}^{p} D_{1, p}^{m}+\sum_{p=m-1}^{S} N_{1}(p+2) C_{1, s}^{p} D_{1, p+1}^{m}
$$

$$
+\sum_{s=m}^{n} M_{2}(s+1) C_{2, n}^{S} D_{1, s}^{m}+\sum_{s=m-1}^{n} N_{2}(s+2) C_{1, n}^{s} D_{1, s+1}^{m}
$$

or, changing n into $n-1$,

$$
\begin{align*}
& L_{2,1, n}^{m}=K_{2}(n)-K_{1}(m+1) L_{2,1, n-1}^{m}+L_{2,1, n-1}^{m} \tag{18}\\
& -\sum_{s=m-1}^{n-1} L_{2,1, n-1}^{S} \sum_{p=m}^{s} M_{1}(p+1) C_{1, s}^{p} D_{1, p}^{m}+\sum_{p=m-1}^{S} N_{1}(p+2) C_{1, s}^{p} D_{1, p+1}^{m} \\
& +\sum_{s=m}^{n-1} M_{2}(s+1) C_{2, n-1}^{S} D_{1, s}^{m}+\sum_{s=m-1}^{n-1} N_{2}(s+2) C_{2, n-1}^{S} D_{1, s+1}^{m}
\end{align*}
$$

Relation (18) is the recurrence relation for the generalized numbers $L_{2,1, n}^{m}$. A similar relation for the Lah-numbers $L_{1,2, n}^{m}$ will be obtained by interchanging the indices 1 and 2 in (18).

5. EXAMPLE

We illustrate by the following example based on examples I and II of section 5 of [3]. Thus:
$\mathrm{K}_{1}(\alpha)=\alpha+1, \quad \mathrm{M}_{1}(\alpha)=(\alpha-1)^{2}, \mathrm{~N}_{1}(\alpha)=0, \quad \mathrm{~K}_{2}(\alpha)=\alpha, \mathrm{M}_{2}(\alpha)=\alpha$,

$$
\mathrm{N}_{2}(\alpha)=\alpha
$$

where the index 1 corresponds to example I and the index 2 to example $I I$ of section 5 of [3]. The numerical values of $C_{1, n}^{m}$ are those of C_{n}^{m}, of $D_{1, n}^{m}$ those of D_{n}^{m} of example I, while $C_{2, n}^{m}$ and $D_{2, n}^{m}$ those of C_{n}^{m} and D_{n}^{m} of example II. Under these conditions we obtain the following for $L_{2,1, \mathrm{n}}$:

$$
\begin{align*}
L_{2,1, n}^{m}= & (n-m-2) L_{2,1, n-1}^{m}+L_{2,1, n-1}^{m-1} \tag{19}\\
& -\sum_{s=m-1}^{n-1} L_{2,1, n-1}^{S}\left[\sum_{p=m}^{s} p^{2} C_{1, s}^{p} D_{1, p}^{m}\right]+\sum_{s=m}^{n-1}(s+1) C_{2, n-1}^{s} D_{1, s}^{m} \\
& +\sum_{s=m-1}^{n-1}(s+2) C_{2, n-1}^{s} D_{1, s+1}^{m}
\end{align*}
$$

	$m=$	0	1	2	3
$n:$				4	
0	1				
1	-4	3			
2	42	-54	12		
3	-1488	2124	-696	60	
4	99680	-170640	67440	-8880	360

REFERENCES

1. I. Lah, Eine neue Art von Zahlen, ihre Eigenschaften und Anwendungen in der mathematischen Statistik, 7 (1955), 203-212.
2. S. Tauber, "On Generalized Lah Numbers," Proc. Edinburgh Math. Soc. , (2) 14 (1965), 229-232.
3. S. Tauber, "On Quasi-Orthogonal Numbers," Amer. Math. Monthly, 69 (1962), 365-372.
4. S. Tauber, "On Two Classes of Quasi-Orthogonal Numbers," Amer. Math Monthly, 72 (1965), 602-606.
5. S. Tauber, "On N-Numbers," Elemente der Mathematik, 19 (1964), 57-62.
