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lo INTRODUCTION 

This article deals with the three Diophantine equations 

(1) x2 + (x + l)2 = z2 

(2) u2 + u = 2v2 

(3) s2 + 21? = 1 . 

These equations have been studied by various methods for hundreds of 
years , and their solutions in positive integers are well known, (See the h is -
torical note at the end of Part II, Feb.) However, as often happens with old 
problems, people not aware of the long history of these equations keep redis-
covering them and their solutions. An article recently submitted to the Fib-
onacci Quarterly dealt with Eq. (1), and solved it by transforming it into 
Eq. (3). Elementary Problem B-102 in the December 1966 issue of the Quar-
terly (page 373) also links Eq. (1) and the solution to Eq. (3). Another article 
recently submitted to the Quarterly deals with Eq. (2), 

The three equations are essentially equivalent because, as we shall see 
in Section 9, each can be transformed into each of the other two by a linear 
transformation. 

2. WHY THE EQUATIONS KEEP COMING UP 
The equations come up over and over again because they arise in a nat-

ural way from some basic problems of number theory. 
A. When the general solution of the equation x2 + y2 = z2 is studied, it 

is natural to consider the special case in which x and y are consecutive inte-
gers . This leads to Eq. (1). 

B. When people play with figurate numbers, and, in particular, with the 
triangular numbers 

360 
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T(u) = | u ( u + 1) , 

and the square numbers 

S(v) = v2 , 

they soon observe that 

36 = S(6) = T(8) . 

This observation naturally suggests the problem of finding all the triangular 
numbers that are also square numbers* This problem leads to Eqe (2). 

C. There is no rational number s/t equal to the square root of 2. That 
is9 there are no positive integers s and t such that 

(4) S2 - 2t2 = 0 . 

However, it is possible to obtain rational approximations to the square root of 
2 with e r ro r s smaller than any prescribed amount The search for rational 
approximations with a small e r ror naturally leads to consideration of the equa-
tion obtained from Eq. (4) by requiring the right-hand member to be 1 instead 
of 0. This leads to Eqe (3). 

3. SOLUTIONS BY TRIAL AND ERROR 

One way of finding some positive integers that satisfy Eq0 (1) is to sub-
stitute first 1, then 2S e tc , , for x in the expression x2 + (x + I)2 to identify 
values of x which make the expression a perfect square,, Similarly, solutions 
of Eq. (2) can be found by identifying by trial and er ror some positive integral 
values of u that make 

fu(u + 1) 

a perfect square. And solutions of Eq, (3) can be found by identifying some 
positive integral values of t that make 1 + 2t2 a perfect square. Anyone with 
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patience and a table of squares, or who has access to a computer can discover 
in this way at least a few of the solutions of each of the three equations. 

It will be useful to us to identify not only positive solutions, but non-
negative solutions. The first five non-negative solutions of Eqs. (1), (2), and 
(3) are shown in the table below: 

Solutions of 
Equation (1) 
X 

0 

3 

20 

119 

696 

z 

1 

5 

29 

169 

985 

Solutions of 
Equation (2) 
u 

0 

1 

8 

49 

288 

V 

0 

1 

6 

35 

204 

Solutions of 
Equation (3) 
s 

1 

3 

17 

99 

577 

t 

0 

2 

12 

70 

408 

4. CAN WE COMPUTE MORE SOLUTIONS 
FROM THOSE WE ALREADY HAVE? 

Once we have the first few solutions of one of these equations, we may, 
by inspecting them, find a relationship by which more solutions can be calcu-
lated. To facilitate the formulation of such a relationship, let us index the 
solutions of each equation in order of magnitude, with the non-negative integers 
0, 1, 2, • • • , respectively, used as indices. Then, in this notation, 

x0 0, z0 = 1, xt = 3, zi x2 = 20, z2 = 29, 

Are there, perhaps, formulas that permit us to calculate x and z in etc 
terms of x 
guess that they are linear. Assume that 

and z ? Let us assume there are such formulas, and let us 
n-i n-i 

(5) a V t + b V i + c 

(6) dx + ez + f • n-i n-i 
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Then we have to use only the first four values of x and z to determine what 
the values of a, b, c, d, e and f must be. Taking n equal to 1, 2, and 3 
in succession, we get the following systems of equations; 

3 = a ° 0 + b * l + c I 5 = d « 0 + e - l + f 
20 = a * 3 + b«5 + c < 2 9 = d « 3 + e * 5 + f 

119 = a • 20 + b - 29 + c , /169 = d • 20 + e • 29 + f . 

Solving these systems of equations, we find that 

a = 3, b = 2, c = 1, d = 4, e = 3, and f = 2 . 

Equations (5) and (6) are merely guesses. However, the fact that the values of 
a, b , c, d, e and f that we calculated on the basis of these guesses turns out 
to be integers, and small ones, at that, is presumptive evidence in favor of 
these guesses. Let us continue operating with these guesses. If Eqs* (5) and 
(6) are true, then they must take this form: 

(7) x = 3x +-2z + 1 , 
n n-d n-i 

(8) z = 4x + 3z + 2 . 7 n n-i n-i 

We can obtain more evidence for or against our guesses by using Eqs. (7) and 
(8) to calculate x4 and z4: 

x4 = 3(119) + 2(169) + 1 = 696 ; 
z4 = 4(119) + 3(169) + 2 = 985 . 

Since these values of x4 and z4 calculated by means of Eqse (7) and (8) agree 
with the values of x4 and z4 in the table, the evidence tends to support the 
correctness of Eqs„ (7) and (8). We now know that Eqs. (7) and (8) are true 
when n = 1, 2, 3, or 4. This gives us the confidence to seek a proof that 
they are true for all positive integral values of n. The proof is given in the 
next section* 



364 THREE DIOPHANTINE EQUATIONS - PART I [Dec. 

EXERCISES 
fVi 

1. Let (u , v ) be the n positive integral solution of Eq. (2). If we 
assume that 

and 
u = alu + bv u + c , n n-i n-i ' 

v =•' du + ev , + f , n n-i n-i * 

then what values must a, b, c, d, e and f have in these formulas? 
2. Let (I 

we assume that 
2. Let (S , t ) be the n solution in positive integers of Eq. (3). If 

and 

s = as + bt + c , n n-i n-i ' 

t = ds + et + f , n n-i n-i 

then what values must a, b, c, d, e and f have in these formulas? 

5. PROOF THAT SUCCESSIVE SOLUTIONS ARE LINEARLY RELATED 

The preceding section led to the conjecture that successive solutions of 
Eq. (1) are related by the linear Eqs. (7) and (8). To prove the conjecture, it 
is necessary to show that 

A. If (x , z ) is a solution of Eq. (1), then (x , z ) defined by 
n—l n—i n n 

Eqs. (7) and (8) is also a solution; 
B. If we take x0 = 0 and z0 = 1, then every solution of Eq. (1) can be 

obtained by starting with (XQ, Z0 ) and making repeated use of Eqs. (7) and (8), 
to generate solutions with greater and greater values of x and z.* 

Proof of A. Suppose that (x , z ) is a solution of Eq. (1). Then we 
want to show that 

<3Vi + 2Vi+1- V i + 3V. + 2 ) 

*The proof given here is adapted from that given in [ 1] . 



1968] THREE DIOPHANTINE EQUATIONS — PART I 365 

is also a solution of Eq. (1). To simplify the notation for the proof, let us 
drop the subscripts. In this simplified notation, we are assuming that 

X2 + (X + I ) 2 = Z2 , 

and we want to show that 

(3x + 2z + 1)2 + (3x + 2z + 2)2 = (4x + 3z + 2)2 . 

(3x + 2z + l)2 + (3x + 2z + 2)2 

= 18x2 + 24xz + 8z2 + 18x + 12z + 5 

= 16x2 + 24xz + 8z2 + 16x + 12z + 4 + (2x2+ 2x+ 1) 

= 16x2 + 24xz + 9z2 + 16x + 12z + 4 

= (4x + 3z + 2)2 . 

in view of the fact that 

2x2 + 2x + 1 = x2 + (x + l)2 = z2 . 

Proof of B. Equations (7) and (8) determine a function 

f : (x,z)—>(x',z') 

as follows: 

(xf = 3x + 2z + 1 , 
(f) J 

f zf = 4x + 3z + 2 . 

If we solve these equations for x and z, we obtain the inverse function 

(g) fef
fzf)->fe,z) 

defined by 
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!

x = 3xf - 2zf + 1 , 

z = -4x? + 3z» - 2 . 

fg = i = the identity function. Then 

ffgg = f(fg)g = fig = fg = i , 

and, in general, 

i V = i 

for every positive integer n. That i s , 

fngn(x,z) = (x,z) . 

We shall show first that if (x, z) is a solution of Eq. (1), with x > 0, z > 0, 
then 

fccijZj) = g(x,z) 

is a solution of Eq. (1) with x* 2, 0, and zj > 0, and zj < z. If 

X2 + (X + I ) 2 = Z2 , 

then 

x\ + (x| + I)2 - 2xf + 2xi + 1 = 2(3x - 2z + I)2 + 2(3x - 2z +' 1) + 1 

= 18x2 + 8z2 - 24xz + 18x - 12z + 5 

= 16x2 + 8z2 - 24xz + I6x - 12z + 4 + (2x2 + 2x + 1) 

= 16x2 + 9z2 - 24xz + 16x - 12z + 4 , 

since 
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2x2 + 2x + 1 = x2 + (x + I)2 = z2 9 

then 

xf + (xj + I ) 2 = M x + 3z - 2)2 = zf . 

Therefore (x^Zj) is a solution of Eq* (1). Now we aim to show that xj > 0, 
zj > 0, and z\ < z. The condition xj > 0 is equivalent to 3x - 2z + 1 > 0„ 
or 2z < 3x + l. The condition that zj > 0 is equivalent to ~4x + 3x - 2 > 0S 

or 3z > 4x + 2, The condition zt < z is equivalent to -4x + 3z - 2 < z, or 
z < 2x + 1. So we shall show that 

z < 2x + 1, 2z < 3x + 1 , 

and 

3z > 4x + 2 . 

z2 = 2x2 + 2x + 1 = 4x2 +' 4x +. 1 - 2X2 - 2x 

= (2x + I)2 - 2x(x + 1)< (2x + I)2 , 

since x > 0, and hence 2x(x + 1) > 0. Therefore z < 2x + 1. Since 

z2 = 2x2 + 2x + 1 , 

and x > 0, then 

9z2 = 18x2 + 18x + 9 > 16x2 + 16x + 4 ~ (4x + 2)2 . 

Therefore 3z > 4x + 2» 

4 z2 = 8x2 + 8z + 4 = 9x2 + 6x + 1 ~ X2 + 2x + 3 . 

Since x > 0, we see from the table of solutions of Eqe (1) that x > 3* Then 
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x2 > 3x = 2x + x > 2x + 3 . 

Then 

2x + 3 - x2 < 0 . 

Consequently 

4z2 < 9x2 + 6x + 1 = (3x + I)2 , 

and 

2z < 3x + 1 . 

We have shown that if (x, z) is a solution of Eq. (1) for which x > 0 and 
z > 0, then 

(xi,Zi) = g(x,z) 

is a solution for which xj > 0, zj > 0, and z^ > z. If xA > 0 we can repeat 
the process to obtain a solution 

(X2,Z2) = g (X i ,Z i ) = g2(x, Z) , 

with x2 > 0, z2 > 09 and z2 < zj. Continuing in this way as long as x. > 
0, i = 1, 2jB * •, we get a descending sequence of positive integers z > zj > 
z2 > •• • . Since this sequence must terminate, there exists a positive integer 
n for which 

(x , z ) = g (x, z) 
N n n & N ' 

is a solution of Eq„ (1) with x = 0. Then z = 1, and M / n n ' 

(0,1) = (x n ,z n ) = gn(x,z) . 
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Then 

^(0 ,1) = ^g n (x ,z ) = (x,z) . 

This completes the proof of Par t B. 
If we return now to the notation of Eqs. (7) and (8), we can say that all 

solutions of Eq. (1) are given by the formula 

(11) ( V z n ) = fQ<°»1>» n = 1 .2 .3 , - - -

where f is defined by (9), 

EXERCISES 

3. Exercise 1 leads to the conjecture that successive solutions ofEq. (2) 
a re related by the equations 

(12) u = 3u + 4v + 1 , 
n n-i n-i ' 

(13) v = 2u + 3v + 1 . 
n n-i n-i 

Let the function g be defined by 

g(u,v) = (3u + 4v + 1, 2u + 3v + 1) . 

Using the method employed above, prove that all solutions in positive integers 
in Eq. (2) are given by 

(14) ( V V n ) = ^(O^O), n = 1 , 2 , 3 , — 

4. Exercise 2 leads us to the conjecture that successive solutions of 
Eq, (3) are related by the equations 

(15) s = 3s + 4t 
n n-i n-i ' 

(16) t = 2s + 3t 
n n-i n-i 

(Continued on p. 317.) 


