ON THE EXISTENCE OF AN INFINITUDE OF COMPOSITE PRIMITIVE DIVISORS OF SECOND-ORDER RECURRING SEQUENCES

DOV AND MOSHE JARDEN
Hebrew University, Jerusalem, Israel

1. INTRODUCTION

Let $\alpha \neq 0, \beta=0,|\alpha|>|\beta|$, be any two complex numbers, such that $\alpha+\beta$ and $\alpha \beta$ are two relatively prime integers. Then the numbers

$$
D_{\mathrm{n}}=\frac{\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}}{\alpha-\beta}=\alpha^{\mathrm{n}-1}+\alpha^{\mathrm{n}-2} \beta+\cdots+\beta^{\mathrm{n}-1}, \quad \mathrm{~S}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}
$$

are integers, since they are expressed as rational integral symmetric functions of the roots α, β of an algebraic equation

$$
z^{2}-(\alpha+\beta) z+\alpha \beta=0
$$

with integral coefficients with leading coefficient unity. One may readily verify that $\left\{D_{n}\right\}$ and $\left\{S_{n}\right\}$ are second-order recurring sequences satisfying the common recursion relation

$$
X_{n}=(\alpha+\beta) X_{n-1}-\alpha \beta X_{n-2}
$$

(Since $D_{0}=0, \quad D_{1}=1 ; S_{0}=2, \quad S_{1}=\alpha+\beta$, the recursion relation again shows that the numbers D_{n}, S_{n} are integers.) One may also easily verify that $D_{2 n}=D_{n} S_{n}$.

Adivisor >1 of $D_{n}, n>1$, is said to be primitive (or: characteristic) if it is relatively prime to any D_{i} with $1<i<n$. The greatest primitive divisor of D_{n} is denoted by D_{n}^{\prime}. A divisor >1 of $S_{n}, n>1$, is said to be primitive (or: characteristic) if it is relatively prime to any S_{i} with $0<i<$ n. The greatest primitive divisor of S_{n} is denoted by S_{n}^{f}. From $D_{2 n}=$ $D_{n} S_{n}$ one may easily deduce that
(1)

$$
\begin{gathered}
\mathrm{D}_{2 n}=\mathrm{S}_{h} \text {. } \\
\text { (Received Nov. } 1966 \text {--revised 1967) } \\
322
\end{gathered}
$$

For any prime p dividing a certain D_{i} with $i>1$, a (p) denotes the smallestpositive subscript n, such that $p \mid D_{n}$. Thus p is a primitive divisor of $D_{a(p)}{ }^{\circ}$

By F_{n} we denote the product
(2)

$$
F_{n}=\prod_{\left.d\right|_{n}} D_{d}^{\mu\left(\frac{n}{d}\right)}
$$

where μ is the Moebius function.
R. D. Carmichael showed in [1] that for any $n \neq 4,6,12$ there is

$$
\begin{equation*}
D_{n}^{\prime}=F_{n} \tag{3}
\end{equation*}
$$

except when $n=a(p) p \lambda, p$ being a primefactor of $D_{n}, \lambda \geq 1$, in which case

$$
\begin{equation*}
D_{n}^{\prime}=\frac{1}{p} F_{n} \tag{4}
\end{equation*}
$$

He showed furthermore that if $n=a(p) p \lambda, \lambda>1$, then p is the greatest divisor of n, except when $p=2$, and $a(p)=3$.

Furthermore Carmichael showed, for α, β real, the following inequalities

$$
\alpha^{\phi(\mathrm{n})-2^{\omega(\mathrm{n})-1}}<\mathrm{F}_{\mathrm{n}}<\alpha^{\phi(\mathrm{n})+2^{\omega(\mathrm{n})-1}}
$$

where ϕ is Euler's totient function, and $\omega(\mathrm{n})$ is the number of distinct prime factors of n .

The main result achieved by Carmichael is the following
Theorem XXIII. If α and β are real and $\mathrm{n} \neq 1,2,6$, then D_{n} contains at least one characteristic factor, except when $n=12, \alpha+\beta= \pm 1, \alpha \beta$ $=-1$.

In the present paper the above Carmichael's results are generalized for any two complex numbers $\alpha \neq 0, \beta \neq 0,|\alpha|>|\beta|$, such that $\alpha+\beta$ and $\alpha \beta$ are two relatively prime integers. (However, the exact value of n beginning with which any D_{n} contains at least one characteristic factor, is not calculated
[Dec.
here.) Furthermore, starting from (2), we deduce an asymptotic formula (6) for F_{n} which is stronger than the inequalities given by Carmichael. Finally, the method of proof used here is slightly simpler than the one used by Carmichael. The main results proved here are the existence of an infinitude of composite D_{n}^{\prime} for any α, β; of composite $D_{2_{n}}$ for $\alpha \beta \neq \square$; and of composite $D_{2 n+1}$ for $(\alpha-\beta)^{2} \neq \pm \square$, or $(\alpha-\beta)^{2}=\square$ and $\alpha \beta \neq-\square$.

2. ASYMPTOTIC FORMULA FOR D_{n}^{\prime}

By (2)
$\begin{aligned} \log F_{n}=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \log D_{d}= & \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \log \frac{\alpha^{d}-\beta^{d}}{\alpha-\beta}=\log \alpha \sum_{d \mid n} \mu\left(\frac{n}{d}\right) d \\ & +\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \log \left\{1-\left(\frac{\beta}{\alpha}\right)^{d}\right\}-\log (\alpha-\beta) \sum_{d \mid n} \mu\left(\frac{n}{d}\right) .\end{aligned}$

Noting that

$$
\sum_{\mathrm{d} \mid \mathrm{n}} \mu\left(\frac{\mathrm{n}}{\mathrm{~d}}\right) \mathrm{d}=\phi(\mathrm{n})
$$

and

$$
\sum_{\mathrm{d} \mid \mathrm{n}} \mu\left(\frac{\mathrm{n}}{\mathrm{~d}}\right)=0
$$

for any $n>1$, we get
(5) $\quad \log \mathrm{F}_{\mathrm{n}}=\log \alpha \cdot \phi(\mathrm{n})+\sum_{\mathrm{d} \mid \mathrm{n}} \mu\left(\frac{\mathrm{n}}{\mathrm{d}}\right) \log \left\{1-\left(\frac{\beta}{\alpha}\right)^{\mathrm{d}}\right\}$, for any $\mathrm{n}>1$.

Let us evaluate

$$
\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \log \left\{1-\left(\frac{\beta}{\alpha}\right)^{d}\right\}
$$

Note that for any $0<q<1$ there exists a positive constant A, such that, for any complex z , for which $|\mathrm{z}| \leq \mathrm{q}$, there is

$$
|\log (1+z)| \leq A|z|
$$

where by $\log (1+z)$ the principal value of \log is understood. Indeed,

$$
\frac{\log (1+z)}{z}=1-\frac{z}{2}+\frac{z^{2}}{3}-\cdots
$$

is an analytic function in the circle $|z-1|<q<1$, hence it is bounded there. Now, putting $\mathrm{q}=\left|\frac{\beta}{\alpha}\right|$, we have, for any $\mathrm{d}>1,\left|\frac{\beta}{\alpha}\right|^{\mathrm{d}} \leq \mathrm{q}$. Hence

$$
\begin{aligned}
\left|\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \log \left\{1-\left(\frac{\beta}{\alpha}\right)^{\mathrm{d}}\right\}\right| & \leq \sum_{\mathrm{d} \mid \mathrm{n}}\left|\log \left\{1-\left(\frac{\beta}{\alpha}\right)^{\mathrm{d}}\right\}\right|<\sum_{\mathrm{d}=1}^{\infty}\left|\log \left\{1-\left(\frac{\beta}{\alpha}\right)^{\mathrm{d}}\right\}\right| \\
& \left.<A \sum_{d=1}^{\infty}\left|\frac{\beta}{\alpha}\right|^{\mathrm{d}}=A\left|\frac{\beta}{\alpha}\right| \frac{1}{1-\left|\frac{\beta}{\alpha}\right|}=A \right\rvert\, \frac{\beta \mid}{|\alpha|-|\beta|}=B
\end{aligned}
$$

where B is a positive constant.
Hence, by (5) it follows that
(6)

$$
\log \mathrm{F}_{\mathrm{n}}=\log \alpha \cdot \phi(\mathrm{n})+0(1)
$$

Now, by (3), (4), we have the following
Theorem 1. There is

$$
\begin{equation*}
\log D_{n}^{\prime}=\log \alpha \cdot \phi(\mathrm{n})+0(1) \tag{7}
\end{equation*}
$$

[Dec.
exceptwhen $n=a(p) p^{\lambda}, \lambda \geq 1, \quad p$ being a prime factor of D_{n}, in which case it is
(8)

$$
\log D_{n}^{\prime}=\log \alpha \cdot \phi(n)-\log p+0(1)
$$

Now, by assumption, $\alpha \beta$ is an integer, and $|\alpha|>|\beta|$, therefore

$$
|\alpha|^{2}>|\alpha| \cdot|\beta|=|\alpha \beta| \geq 1
$$

hence

$$
|\alpha|>1, \quad|\log \alpha| \geq \log |\alpha|>0
$$

By a theorem in [2], p. 114, there exists a positive constant C, such that

$$
\phi(n)>\frac{C \cdot n}{\log \log n} \text { for } n>3
$$

On the other hand $p \mid n$, hence $\log p \leq \log n$. Hence, by Theorem 1,
(9) $\quad \log D_{n}^{\prime}>|\log \alpha| \cdot \phi(n)-\log p-B>\log |\alpha| \frac{C \cdot n}{\log \log n}-\log n-B \underset{n \rightarrow \infty}{\longrightarrow}$,
which means that:

Theorem 2. Beginning with a certain positive n, D_{n} has at least one primitive factor.

Remark. The error term $0(1)$ in (7) cannot be refined, since if n is a prime, then

$$
\sum_{d \mid n} \mu\left(\frac{\mathrm{n}}{\mathrm{~d}}\right) \log \left\{1-\left(\frac{\beta}{\alpha}\right)^{\mathrm{d}}\right\}=-\log \left\{1-\frac{\beta}{\alpha}\right\}+\log \left\{1-\left(\frac{\beta}{\alpha}\right)^{\mathrm{n}}\right\} \underset{\mathrm{n} \rightarrow \infty}{\rightarrow-\log \left\{1-\frac{\beta}{\alpha}\right\} \neq \mathrm{m}}
$$

Theorem 3.

$$
\sum_{n=1}^{\infty} \frac{1}{D_{n}^{\prime}}
$$

converges.
Proof. From (9) it follows that there is a positive constant D such that, for all $\mathrm{n} \geqq 1$,

$$
D_{n}^{\prime} \geq \frac{|\alpha|^{\frac{C \cdot n}{\log \log n}}}{e^{B} \cdot n} \geq D \cdot n^{2}
$$

Hence

$$
\sum_{n=1}^{\infty} \frac{1}{D_{n}^{\prime}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

3. MAIN RESULTS

Lemma 1. Be N the sequence of natural numbers, S a subsequence of N, and A a reduced arithmetic progression. Then, an infinitude of D_{n}^{\prime} is composite for
I)
$\mathrm{n} \in \mathrm{S}$
or
II) $n \in N-S$
according as
I)
any
or
II) no
prime member of A is a factor of a certain $D_{n}^{p}, n \in S$.
Proof. I) Suppose any prime member of A is a factor of a certain D_{n}^{\prime}. $n \in S$, and that there is a positive integer n_{0} such that any D_{n}^{\prime}, where $n \in$ $S, n>n_{0}$, is a prime. Let q be the greatest prime factor of $D_{n}^{\prime}, n \leq n_{0}$.

Then, by Theor $\in \mathrm{m}$ 3, and noting that

$$
\sum_{p \in A} \frac{1}{p}=\infty
$$

where p denotes a prime number, we have

$$
\infty>\sum_{n \in N} \frac{1}{D_{n}^{\prime}} \geq \sum_{n \in S} \frac{1}{D_{n}^{\prime}} \geq \sum_{\substack{p \in A \\ p>q}} \frac{1}{p}=\infty,
$$

whence $\infty>\infty$, which is absurd. Thus, I) is proved.
II) Suppose no prime member of A is a factor of a certain $D_{n}^{\prime}, n \in S$. Then, noting that any prime $\mathrm{p} \mid 2(\alpha-\beta)^{2} \alpha \beta$ is a factor of a certain D_{n}^{\prime} ([1], p. 45 , Theorem XII), any prime member of A not a factor of $2(\alpha-\beta)^{2} \alpha \beta$ ia a factor of a certain $D_{n}^{\prime}, n \in N-S$, and II) follows as above.

Theorem 4. There is an infinitude of composite D_{n}^{\prime}.
Proof. The theorem is an immediate consequence of Lemma 1, noting that any prime $p \mid 2(\alpha-\beta)^{2} \alpha \beta$ is a factor of a certain D_{n}^{\prime}.

Lemma 2. If b is an integer, and $\mathrm{b} \neq \square$, then there exists an odd prime p, such that $\left(\frac{b}{p}\right)=-1$, where $\left(\frac{b}{p}\right)$ is Legendre's symbol. In particular,
I) If $b= \pm m^{2} p_{1}, \cdots, p_{r}$, where $r \geq 1$ and p_{1}, \cdots, p_{r} are distinct primes, then there exists an integer $u=1(\bmod 4)$, where $\left(u, 4 p_{1}, \cdots, p_{r}\right)=$ 1 , such that, for any prime $p=u\left(\bmod 4 p_{1}, \cdots, p_{r}\right)$, it is

$$
\left(\frac{ \pm \mathrm{b}}{\mathrm{p}}\right)=-1 .
$$

II) If $b=-m^{2}$, then for any prime $p=-1(\bmod 4)$ it is

$$
\left(\frac{\mathrm{b}}{\mathrm{p}}\right)=-1
$$

Proof. [2], p. 75.

Lemma 3. Let p be an odd prime. If $p \mid a x^{2}+b y^{2}$ for some integers a, b, x, y, and $p \nmid(x, y)$, then

$$
\left(\frac{-a b}{p}\right)=1
$$

Proof. Since $p \nmid(x, y), p$ cannot divide both x and y. Thus, without loss of generality, we may assume that $p \nmid y$. Then there exists an integer z, such that $y z=1(\bmod p)$. Hence, from $a x^{2}+b y^{2}=0(\bmod p)$ it follows that

$$
(a x z)^{2}=-a b(\bmod p)
$$

whence

$$
\left(\frac{-a b}{p}\right)=1
$$

Lemmas 2, 3 imply the following:
Lemma 4. I) If $b= \pm m^{2} p_{1}, \cdots, p_{r}$, where $r \geq 1$ and p_{1}, \cdots, p_{r} are distinct primes, then there exists an integer $u=1(\bmod 4)$, where $\left(u, 4 p_{1}\right.$, $\left.\cdots, p_{r}\right)=1$, such that, for any prime $p=u\left(\bmod 4 p_{i}, \cdots, p_{r}\right)$, it is $p \nmid x^{2}$ $+b^{2}$ for any integers x, y, such that $p \|(x, y)$.
II) If $b=m^{2}$ and $p \nmid(x, y)$, then $p \nmid x^{2}+b y^{2}$ for any prime $p=-1$ $(\bmod 4)$.

Theorem 5. If $\alpha \beta \neq \square$, then there is an infinitude of composite $D_{2 n}$. Proof. One may readily verify that

$$
\mathrm{D}_{2 \mathrm{n}+1}=\mathrm{D}_{\mathrm{n}+1}^{2}-\alpha \beta \mathrm{D}_{\mathrm{n}}^{2}
$$

On the other hand, $\left(D_{n+1}, D_{n}\right)=1([1]$, p. 38, Corollary). Hence, putting in Lemma 4:

$$
\mathrm{b}=-\alpha \beta, \quad \mathrm{x}=\mathrm{D}_{\mathrm{n}+1}, \quad \mathrm{y}=\mathrm{D}_{\mathrm{n}}
$$

and noting that, according to the assumption, $b=-\alpha \beta \neq-\square$, there exists a reduced arithmetic progression A, no prime member of which divides $D_{2 n}+r$.
[Dec.
Hence, no prime member of A is a factor of $D_{2 n+1}$. The theorem follows by Lemma 1, II).

Theorem 6. If
I)

$$
(\alpha-\beta)^{2} \neq \pm \square
$$

or
II) $(\alpha-\beta)^{2}=\square$ and $\alpha \beta \neq-\square$,
then there is an infinitude of composite $D_{2 n+1}$.
Proof. One may readily verify that

$$
\begin{equation*}
\mathrm{S}_{\mathrm{n}}^{2}=(\alpha-\beta)^{2} \mathrm{D}_{\mathrm{n}}^{2}+4(\alpha \beta)^{\mathrm{n}} \tag{9}
\end{equation*}
$$

I) Suppose that $(\alpha-\beta)^{2} \neq \pm$. Then $(\alpha-\beta)^{2}= \pm \mathrm{m}^{2} \mathrm{p}_{1}, \cdots, \mathrm{p}_{\mathrm{r}}$, where $r \geq 1$ and p_{1}, \cdots, p_{r} are distinct primes. Then, by Lemma 2, I), there is an integer u, such that

$$
\begin{equation*}
u=1 \quad(\bmod 4) \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\left(u, 4 p_{1}, \cdots, p_{r}\right)=1 \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{p}=\mathrm{u}\left(\bmod 4 p_{1}, \cdots, p_{r}\right) \tag{12}
\end{equation*}
$$

implies

$$
\left(\frac{-(\alpha-\beta)^{2}}{p}\right)=-1
$$

for any prime p.
Consider the pair of congruences

$$
\left\{\begin{array}{l}
\mathrm{x}=\mathrm{u}\left(\bmod 4 \mathrm{p}_{1}, \cdots, \mathrm{p}_{\mathrm{r}}\right) \tag{13}\\
\mathrm{x}=1(\bmod 4 \alpha \beta)
\end{array}\right.
$$

From the identity

$$
(\alpha+\beta)^{2}-4 \alpha \beta=(\alpha-\beta)^{2}
$$

and from the assumption

$$
(\alpha+\beta, \alpha \beta)=1,
$$

it follows

$$
1=\left(\alpha \beta, p_{1}, \cdots, p_{r}\right) \leq\left(\alpha \beta, \pm m^{2} p_{1}, \cdots, p_{r}\right)=\left(\alpha \beta,(\alpha-\beta)^{2}\right)=1
$$

Hence

$$
\left(4 \mathrm{p}_{1}, \cdots, \mathrm{p}_{\mathrm{r}}, 4 \alpha \beta\right)=4\left(\mathrm{p}_{1}, \cdots, \mathrm{p}_{\mathrm{r}}, \alpha \beta\right)=4
$$

But, by (10), $4 \mid u-1$, hence (13) has a solution u^{\prime}, i. e.,

$$
\begin{equation*}
u^{\prime}=u\left(\bmod 4 p_{1}, \cdots, p_{r}\right), u^{\prime}=1(\bmod 4 \alpha \beta) \tag{14}
\end{equation*}
$$

Let p be a prime satisfying $\mathrm{p}=1(\bmod 4 \alpha \beta)$. If $\alpha \beta$ is odd, then, according to the properties of the Jacobi symbol

$$
\left(\frac{\alpha \beta}{\mathrm{p}}\right)=\left(\frac{\mathrm{p}}{\alpha \beta}\right)=\left(\frac{1}{\alpha \beta}\right)=1 .
$$

If $\alpha \beta$ is even, then $\mathrm{p}=1(\bmod 8)$, and $\alpha \beta=2^{\mathrm{k}}$, where $\mathrm{k} \geq 1$ and $2 \ell \mathrm{t}$. Then

$$
\left(\frac{\alpha \beta}{\mathrm{p}}\right)=\left(\frac{2}{\mathrm{p}}\right)^{\mathrm{k}}\left(\frac{\mathrm{t}}{\mathrm{p}}\right)=\left(\frac{\mathrm{p}}{\mathrm{t}}\right)=\left(\frac{1}{\mathrm{t}}\right)=1 .
$$

in both cases

$$
\left(\frac{\alpha \beta}{p}\right)=1 .
$$

Combining the last result with (11), (12) and (14), we conclude

$$
\begin{equation*}
\left(u^{\prime}, 4 p_{1}, \cdots, p_{r}\right)=1 \tag{15}
\end{equation*}
$$

(16) If $p=u^{\prime}\left(\bmod 4 p_{1}, \cdots, p r\right)$, then

$$
\left(\frac{-(\alpha-\beta)^{2}}{\mathrm{p}}\right)=\left(\frac{-\alpha \beta(\alpha-\beta)^{2}}{\mathrm{p}}\right)=-1
$$

for any prime p.
We shall now show that if
(17)

$$
p=u^{\prime} \quad\left(\bmod 4 p_{1}, \cdots, p_{r}\right)
$$

then $p \nmid D_{2 n}$. Indeed, if $p \mid D_{2 n}$, then, by (1), $p \mid S_{n}^{p}$, hence $p \mid S_{n}^{2}$. Hence, by (9),

$$
\mathrm{p} \mid(\alpha-\beta)^{2} \mathrm{D}_{\mathrm{n}}^{2}+4(\alpha \beta)^{\mathrm{n}}
$$

Putting in Lemma 3:

$$
\mathrm{x}=\mathrm{D}_{\mathrm{n}}, \quad \mathrm{y}=2, \quad \mathrm{a}=(\alpha-\beta)^{2}, \quad \mathrm{~b}=(\alpha \beta)^{\mathrm{n}}
$$

we have

$$
\left(\frac{-(\alpha \beta)^{\mathrm{n}}(\alpha-\beta)^{2}}{\mathrm{p}}\right)=1
$$

If n is even, then

$$
1=\left(\frac{-(\alpha \beta)^{\mathrm{n}}(\alpha-\beta)^{2}}{\mathrm{p}}\right)=\left(\frac{-(\alpha-\beta)^{2}}{\mathrm{p}}\right)
$$

If n is odd, then

$$
1=\left(\frac{-(\alpha \beta)^{\mathrm{n}}(\alpha-\beta)^{2}}{\mathrm{p}}\right)=\left(\frac{-\alpha \beta(\alpha-\beta)^{2}}{\mathrm{p}}\right)
$$

Both cases contradict (16). The theorem now follows from (17), (15), and Lemma 1, II).
II) Suppose $(\alpha-\beta)^{2}=m^{2}$, where m is an integer and $\alpha \beta \neq-\square$. Then (9) becomes

$$
\begin{equation*}
\mathrm{S}_{\mathrm{n}}^{2}=\left(\mathrm{mD} \mathrm{D}_{\mathrm{n}}\right)^{2}+4(\alpha \beta)^{\mathrm{n}} \tag{18}
\end{equation*}
$$

This formula implies, by Lemma 3, if
(19)

$$
\mathrm{p} \mid \mathrm{D}_{\mathrm{s}_{\mathrm{n}}}
$$

(and hence $\mathrm{p} \mid \mathrm{S}_{\mathrm{h}}^{2}$), then

$$
\left(\frac{-(\alpha \beta)^{\mathrm{n}}}{\mathrm{p}}\right)=1
$$

for any odd prime p. Consider now the three following cases.
Case 1: $\alpha \beta=\mathrm{n}^{2} \cdot 2^{\mathrm{k}}$, where $\mathrm{k} \geq 0$. Then, if $\mathrm{p}=-1(\bmod 8)$, then

$$
\left(\frac{-(\alpha \beta)^{\mathrm{n}}}{\mathrm{p}}\right)=\left(\frac{-1}{\mathrm{p}}\right)\left(\frac{2}{\mathrm{p}}\right)^{\mathrm{k}}=-1
$$

and hence, by (19), $p \nmid D_{2 n}$.
Case 2: $\alpha \beta=n^{2} \cdot 2^{k} \cdot q_{1}, \cdots, q_{r}$, where $k \geq 0, r \geq 1, q_{1}, \cdots, q_{r}$ are distinct odd primes, and $t=q_{1}, \cdots, q_{r}=1(\bmod 4)$.

Consider the pair of congruences
(20)

$$
\left\{\begin{array}{l}
x=-1(\bmod 8) \\
x=1(\bmod t)
\end{array}\right.
$$

Since ($\mathrm{t}, 8$) $=1$, (20) has a solution u_{0} This solution satisfies

$$
\begin{equation*}
(\mathrm{u}, 8 \mathrm{t})=1 \tag{21}
\end{equation*}
$$

If $\mathrm{p}-\mathrm{u}(\bmod 8 \mathrm{t})$ is a prime, then

$$
\begin{equation*}
\left(\frac{-(\alpha \beta)^{\mathrm{n}}}{\mathrm{p}}\right)=\left(\frac{-1}{\mathrm{p}}\right)\left(\frac{2}{\mathrm{p}}\right)^{\mathrm{kn}}\left(\frac{\mathrm{t}}{\mathrm{p}}\right)^{\mathrm{n}}=-\left(\frac{1}{\mathrm{t}}\right)=-1 \tag{22}
\end{equation*}
$$

and hence, by (19), $\mathrm{p} / \mathrm{D}_{2 \mathrm{ln}}$.
Care 3: Everything as in Case 2, except that $t=-1(\bmod 4)$.
Choose a quadratic nonresidue c modulo q_{1}, i. e.,

$$
\left(\frac{c}{q_{1}}\right)=-1
$$

Consider the system of congruences
(23)

$$
\left\{\begin{array}{l}
\mathrm{x}=-1(\bmod 8) \\
\mathrm{x}=\mathrm{c} \\
\left.\mathrm{mod} \mathrm{q}_{1}\right) \\
\mathrm{x}=1\left(\bmod \mathrm{q}_{2}\right) \\
\dot{\mathrm{x}}=1 \dot{\left(\bmod \mathrm{q}_{\mathrm{r}}\right)}
\end{array}\right.
$$

If $r \geq 2$, or the system
(24)

$$
\left\{\begin{array}{l}
\mathrm{x}=-1(\bmod 8) \\
\mathrm{x}=\mathrm{c}\left(\bmod \mathrm{q}_{1}\right)
\end{array}\right.
$$

if $r=1$. Since q_{1}, \cdots, q_{r} are distinct odd primes, (23) and (24) have a solution v. v satisfies:
(25)

$$
(v, \quad 8 t)=1
$$

If $\mathrm{p}=\mathrm{v}(\bmod 8 \mathrm{t})$ is a prime, then
(26)
[Cont. on p. 406.]

$$
\begin{aligned}
\left(\frac{-(\alpha \beta)^{n}}{p}\right) & =\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)^{k n}\left(\frac{t}{p}\right)^{n}=(-1)(+1)\left[-\left(\frac{p}{t}\right)\right]^{n} \\
& =-\left(-\left(\frac{p}{q_{1}}\right)\left(\frac{p}{q_{2}}\right) \cdots\left(\frac{p}{q_{r}}\right)\right)^{n} \\
& =-\left(-\left(\frac{c}{q_{1}}\right)\left(\frac{1}{q_{2}}\right) \cdots\left(\frac{1}{q_{r}}\right)\right)^{n}=1
\end{aligned}
$$

