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1. INTRODUCTION 

Let a f 0, /3 = 0, J a | > |j8j, be any two complex numbers, such that 
a + p and a/3 are two relatively prime integers* Then the numbers 

n n ~ a - j3 n- i , n-2^ , , 0 n - i a n , 0n 
n o f - j S ^ ^ ' n 

a re integers, since they are expressed as rational integral symmetric func-
tions of the roots a,p of an algebraic equation 

z2-- (a + jS)z + o0 = 0 

with integral coefficients with leading coefficient unity., One may readily ver-
ify that {D } and {S } ar 
• •* L nJ nJ 

common recursion relation 

ify that {D } and {S } are second-order recurring sequences satisfying the 

X = (a + j8)X - a$X„ . n n-i n-2 

(Since Do = 0f D | = 1; S0 = 29 S4 = a + 0 , the recursion relation again 
shows that the numbers D , 3 are integers*) One may also easily verify 
that D2n = DnSn • 

Adivisor > 1 of D , n > 1, is said to be primitive (ors characteristic) 
if it is relatively prime to any D. with 1 < i < n* The greatest primitive 
divisor of D is denoted by Df» A divisor > 1 of S , n > 1, is said to be n J n n 
primitive (or: characteristic) if it is relatively prime to any S. with 0 < i < 
n. The greatest primitive divisor of S is denoted by S? • From D ^ = 
D S one may easily deduce that 

(1) DJn - Sn . 
d e c e i v e d Nov* 1 9 6 6 - - r e v i s e d 196?) 
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For any prime p dividing a certain D. with i > l s a (p) denotes the 
smallestpositive subscript nf such that plD . Thus p is a primitive divisor 
of D M 9 a(p) 

By F we denote the product 

(2) F = n ®* 
n d 

d n 

where pt is the Moebius function® 
R. D. Carmichael showed in [1] that for any n ^ 4, 6, 12 there is 

(3) Df = F 
x ' n n 

except when n = a(p)p \ p being a prime factor of D , X > 1, in which case 

(4) Df = i F . 
n p n 

He showed furthermore that if n = a(p)p\ X > l f then p is the greatest di-
visor of n, except when p = 2, and a(p) = 3* 

Furthermore Carmichael showed* for a9p real* the following inequalities 

n 

where <f> *s Euler1 s totient function, and m{n) is the number of distinct prime 
factors of n. 

The main result achieved by Carmichael is the following 
Theorem XXHL If a and p are real and n f- 1,2,6, then Dn con-

tains at least one characteristic factor, except when n = 12, a +'j8 = ±1, ofi 
= - 1 . 

In the present paper the above Carmichael1 s results are generalized for 
any two complex numbers a f 05 p fi 0$ J a\ > | p\, such that a + p and ap 
are two relatively prime integers* (Howevers the exact value of n beginning 
with which any D contains at least one characteristic factor, iS not calculated 
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here . ) Furthermore, starting from (2), we deduce an asymptotic formula (6) 
for F which is stronger than the inequalities given by Carmichael. Finally, 
the method of proof used here is slightly simpler than the one used by 
Carmichael, The main results proved here a re the existence of an infinitude 
of composite D! for any a, p; of composite DJn for afi f • ; and of com-
posite DJn+1 for (a-j3)2 f C3> or (a - 0)2 = • and op ^ ~ Q 

2. ASYMPTOTIC FORMULA FOR D' 
n 

By (2) 

djn d|n d|n 

+E^)^(i-(i)d}-iog^)i:^(s). 
d|n L J d|n 

Noting that 

and 

2 M(S) d = *<n) , 
d|n 

E*(S1 -• 
d|n 

for any n > 1, we get 

<5) log F Q = loga . <J>(n) + J ] ji( j j j log<J 1 - ( § ) }>, for any n > 1 . 
djn 
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Let us evaluate 
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d|n I J 

Note that for any 0 < q < 1 there exists a positive constant A, such that, for 
any complex z, for which | z| =^q, there is 

| l og ( l + z)| < A|z | - f 

where by log (1 + z) the principal value of log is understood. Indeed, 

log (1 + z) - z z£ 
z X " 2 3 

is an analytic function in the circle | z - 1| < q < 1, hence it is bounded there. 
, we have, for any d > 1, -M ^ q. Hence Now, putting q = § 

2 WIN MS)' 
d|n d|n 

"^ ! - ( ! ) ' 
d=i 

* >-(§)' 

Allil'Hiirfn-^t 
d=i ' M a i 

Ifl B , 

where B is a positive constant. 
Hence, by (5) it follows that 

(6) log F n = log a • 0(n) + 0(1) 

Now, by (3), (4), wo have the following 
Theorem 1. There is 

(7) logD^ = log a • 0(n) + 0(1) f 
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exceptwhen n = a(p)p \ X > 1, p being a prime factor of D7, in which case 
it is 

(8) log D^ = log a . </>(n) - log p + 0(1) . 

Now, by assumption, a@ is an integer, and | a | > |j3|, therefore 

M 2 > \a\ *\p\ = lots') 2*1 , 

hence 

\a\ > 1, Hog of j ^loglo/i > 0 * 

By a theorem in [2 ] , p. 114, there exists a positive constant C, such that 

^ > logClogn £ o r n > 3 • 

On the other hand p|n, hence log p s log n. Hence, by Theorem 1, 

C n (9) log D ; > (log or| • *(D) - log p - B > log| a\ ^ g n " l o g n " B " n ^ 00 

which means that: 

Theorem 2« Beginning with a certain positive n, D has at least one 
primitive factor* 

Remark. The e r ro r term 0(1) in (7) cannot be refined, since if n is a 
prime, then 

I»(SW{-(§)] --*{i-§}**.{i-(§)}; V-i>-!^ 
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Theorem 3. 

J2w 
t̂  n 

converges, 
Proof, From (9) It follows that there is a positive constant D such that, 

for all n ^ 1, 

C*n 
s i loglogn 

n B 
e *n 

Hence 

n=i n=i 

36 MAIN RESULTS 

Lemma 1* Be N the sequence of natural numbers, S a subsequence of 
N, and A a reduced arithmetic progression* Then, an infinitude of D* is 
composite for 

I) n E S or II) n E N ~ S 

according as 

1) any or II) no 

prime member of A is a factor of a certain D f , n E S. 
Proof. 1) Suppose any prime member of A is a factor of a certain BK 

n E S, and that there is a positive integer n0 such that any D ! , where n E 
S, n > n0, is a prime* Let q be the greatest prime factor of D f , n - n0. 
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Then, by Theorem 3, and noting that 

E i = 00 

pEA 

where p denotes a prime number, we have 

nGN n nGS n pGA 
P>q 

whence oo > oo , which is absurd. Thus, I) is proved. 
II) Suppose no prime member of A is a factor of a certain D ! , n E S. 

Then, noting that any prime p ][ 2(a - p)2ap is a factor of a certain Df ([1], p. 
45, Theorem XII), any prime member of A not a factor of 2(a-f})2a($ ia a fac-
tor of a certain D f , n E N - S, and n) follows as above. 

Theorem 4. There is an infinitude of composite D*. 
Proof. The theorem is an immediate consequence of Lemma 1, noting 

that any prime p ^ 2(a - j3)2cq3 is a factor of a certain D f . 
Lemma 2. If b is an integer, and b f • , then there exists an odd 

prime p, such that f —J = -1* where I —1 is Legendre's symbol. In particular, 
I) If b = ±m2pl9 • • • , p r , where r ^ 1 and Pi, • • •, p are distinct 

primes, then there exists an integer u = 1 (mod 4), where (u, 4pi,--«« ,p r ) = 
1, such that, for any prime p = u (mod 4pl9 * • •, p r ) , it is 

(S)-
II) If b = -m2, then for any prime p = -1 (mod 4) it is 

Q> 
Proof. [ 2 ] , p. 75. 
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Lemma 3. Let p be an odd prime. If p| ax2 •+ by2 for some integers 
a, b, x, y, and p ^ (x,y), then 

Proof. Since p | (x,y), p cannot divide both x and y. Thus, without 
loss of generality, we may assume that p ^ . Then there exists an integer z, 
such that yz = 1 (mod p). Hence, from ax2 + by2 = 0 (mod p) it follows that 

(axz)2 = -ab (mod p), 

whence 

( * ) - » • • 

Lemmas 2, 3 imply the following: 
Lemma 4. I) If b = ±m2pi,e e •, p r , where r ^ 1 and p^ 8 a e , p r are 

distinct primes, then there exists an integer u = 1 (mod 4), where (u,4pj, 
• • • > Pr) = * » s u c n &&U ^ o r a n y prime p = u (mod 4plf • • •, p r )s it is p f x2 

+ by2 for any integers x, y, such that p f (x, y). 
II) If b = pa2 and p j / (x,y), then p | x2 + by2 for any prime p = -1 

(mod 4). 
Theorem 5. If ap f • , then there is an infinitude of composite DJn. 
Proof. One may readily verify that 

D2n+l = D&+i - afil% . 

On the other hand, (D , . D ) = 1 ( f l l , p. 38, Corollary). Hence, putting 
n+i n L J 

in Lemma 4: 

b = -o-jS, x = D . , y = D , 
r> n+i J n ? 

and noting that, according to the assumption, b = -afi f - P ] , there exists a 
reduced arithmetic progression A, no prime member of which divides D2n+r. 
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Hence, no prime member of A is a factor of D£n+le The theorem follows by 
Lemma, 1, I I ) . 

Theorem 6. If 

(a - P)2 f ± D , 

or 

n) (a - /3)2 = D and a? £ JJ , 

then there is an infinitude of composite D^+j 8 

Proof. One may readily verify that 

(9) S^ = (a - £)2D^ + 4 ( ^ ) n . 

I) Suppose that (a - /3)2 f i f ] , Then (a - j3)2 = ±m2p1? • •*, p r , where 
r ^ 1 and pA,e • •, p r are distinct primes,, Then, by Lemma 2, I), there is 
an integer u, such that 

(10) u = 1 (mod 4) , 

(11) (u, 4p 1 ,«*- ,p r ) = 1 , 

(12) p = u (mod 4p1?»* *,Pr) 

implies 

~{a-$)2 , = _x 

for any prime p. 
Consider the pair of congruences 

!

x = u (mod 4pl9 • • • , p r ) 

x = 1 (mod 4QJS) 
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From the identity 

(a +/5)2 -4cfi = (a - 0 ) 2 , 

and from the assumption 

(a?+/3 , flj8) = 1 , 

i t follows 

1 = fe^,plf...,pr) ^ (o0, ±m 2 Pi , -«- ,p r ) =• (oj8,(or-|8.)2) = 1 .. 

Hence 

(4pl9»-»,pr94^iS) = 4(pl9
ee',pr,<*j3) = 4 . 

But, by (10), 4|u - 1, hence (13) has a solution u!, i. e . , 

(14) uf = u (mod 4p1? ••• , p r ) , uf = 1 (mod 4ofi) . 

Let p be a prime satisfying p = 1 (mod 4c*j8). If aft is odd, then, accord-
ing to the properties of the Jacobi symbol 

( ? ) - ( # ) - & ) - ' • 
If af$ is even, then p = 1 (mod 8), and aft = 2 t, where k ^ l and 2 [ t. 
Then 

(f)-(if(tWf)-(*)-'• 
in both cases 
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Combining the last result with (11), (12) and (14), we conclude 

(15) <u', 4 P l , . . . , P r ) = 1 , 

(16) If p = uf (mod 4p4, • • • , p r ) , then 

( -fr-P>2 \ = /-<*£(<*-ff)2\ = _x f 

for any prime p. 
We shall now show that if 

(17) p = uT (mod 4p4, • • • , pr ) , 

then p f DJn. Indeed, if p|D£n, then, by (1), pjS^, hence p|S^. 
(9), 

p l ^ - j S ) ^ + 4(or/3)n . 

Putting in Lemma 3: 

x = Dn, y = 2, a = (a -j3)2, b = (apf, 

we have 

If n is even, then 

/ - (qp)n(g-p)»\ 

= / - W n ( g - j 8 ) 8 \ = / - (<* - f f ) 2 \ 

If n is odd, then 
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Both cases contradict (16). The theorem now follows from (17), (15), and 
Lemma 1, II). 

II) Suppose (a - P)2 = m2, where m is an integer and a/3 fi - Q . Then 
(9) becomes 

(18) S£ - (mDn)2 + 4(q8)n . 

This formula implies, by Lemma 3, if 

(19) p|D§n 

(and hence p|S^), then 

m 1 , 

for any odd prime p. Consider now the three following cases. 
Case 1; ap = n2 • 2 , where k ^ 0. Then, if p = -1 (mod 8), then 

m - G)(!f - - • 
and hence, by (19), p j[ DJn . 

Case 2: a/3 = n2 • 2 • qls ••• ,qr» where k ^ 0, r ^ 1, q4, • - • , q r a r e 
distinct odd primes, and t = qj, •e •, q^ = 1 (mod 4). 

Consider the pair of congruences 

( x •= - 1 (mod 8) 
(20) I 

x = 1 (mod t) 

Since (t, 8) = l, (20) has a solution u. This solution satisfies 

(21) (u, 8t) = 1 . 
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If p •- u (mod 8t) is a prime, then 

(22) (=?=) • mm --© - -> • 
and hence, by (19), p / DJQ • 

Care 3; Everything as in Case 2, except that t = -1 (mod 4). 
Choose a quadratic nonresidue c modulo q ,̂ i. e . , 

( * ) -
= -1 . 

Consider the system of congruences 

(23) 

x = -1 (mod 8) 
x = c (mod qi) 
x = 1 (mod q2> 
x = 1 (mod q r ) 

If r ^ 2, or the system 

(24) 
(x = -1 (mod 8) 

(x = c (mod qj) 

if r = 1. Since q1? • • •, q r are distinct odd primes, (23) and (24) have a solu-
tion v. v satisfies: 

(25) (v, 8t) = 1 , 

If p = v (mod 8t) is a prime, then 

(26) W- ,kn /A\n 
(-1X+1) 

[Cont on p. 406.] 

-'f 

= 1 


