## ANY LUCAS NUMBER $L_{5 p}$, FOR ANY PRIME $p \geq 5$, HAS AT LEAST <br> TWO DISTINCT PRIMITIVE PRIME DIVISORS <br> DOV JARDEN

Hebrew University, Jerusalem, Israel

Proof. It is well known that, for any positive integer $n, L_{5 n} / L_{n}=A_{n} B_{n}$, where

$$
A_{n}=5 F_{n}^{2}-5 F_{n}+1, B_{n}=5 F_{n}^{2}+5 F_{n}+1, A_{n}<B_{n},\left(A_{n}, B_{n}\right)=1
$$

where $F_{\mathrm{n}}$ denotes a Fibonacci number (compare, e.g., Recurring Sequences, Jerusalem, 1966, pp. 16-21. For $n=5$ we have: $A_{n}=101, B_{n}=151$, and the statement is true. In order to prove it for $p>5$, it is sufficient to show that the greatest non-primitive divisor of $L_{5 p}, p>5$, is smaller than $A_{p}$, hence the greatest primitive divisor of $L_{5 p}$ is greater than $B_{p}$, hence both $A_{n}$ and $B_{n}$ have primitive divisors, and since $\left(A_{n}, B_{n}\right)=1$, $A_{n}$ has a primitive prime divisor $a, B_{n}$ has a primitive prime divisor $b$, and a $\neq \mathrm{b}$ 。

Now, the greatest non-primitive divisor of $L_{5 p}$ is $L_{5} L_{p}=11 L_{p}$, and we have to show that $11 L_{p}<A_{p}$ for any prime $p>5$. We shall show that $11 L_{n}<A_{n}$ for any positive integer $n>5$. The proof is based on the following two inequalities:
(1)

$$
\begin{gather*}
L_{n}<3 F_{n} \quad(n>2) \\
33<5\left(F_{n}-1\right) \quad(n>5) \tag{2}
\end{gather*}
$$

Equation (1) is easily verified for $n=3$, 4. If (1) is valid for $n, n+1$, its validity for $n+2$ follows by addition of the corresponding inequalities sidewise. Similarly (2) is shown. Hence

$$
\begin{aligned}
11 \mathrm{~L}_{\mathrm{n}}<11 \cdot 3 \mathrm{~F}_{\mathrm{n}}=33 \mathrm{~F}_{\mathrm{n}}<5\left(\mathrm{~F}_{\mathrm{n}}-1\right) \mathrm{F}_{\mathrm{n}}= & 5 \mathrm{~F}_{\mathrm{n}}^{2}-\mathrm{F}_{\mathrm{n}} \\
& <5 \mathrm{~F}_{\mathrm{n}}^{2}-\mathrm{F}_{\mathrm{n}}+1=A_{\mathrm{n}}
\end{aligned}
$$

This completes the proof.

