ANY LUCAS NUMBER L_{5p} , FOR ANY PRIME $p \ge 5$, HAS AT LEAST TWO DISTINCT PRIMITIVE PRIME DIVISORS DOV JARDEN

Hebrew University, Jerusalem, Israel

<u>Proof.</u> It is well known that, for any positive integer n, $L_{5n}/L_n = A_n B_n$, where

$$A_n = 5F_n^2 - 5F_n + 1$$
, $B_n = 5F_n^2 + 5F_n + 1$, $A_n < B_n$, $(A_n, B_n) = 1$,

where F_n denotes a Fibonacci number (compare, e.g., <u>Recurring Sequences</u>, Jerusalem, 1966, pp. 16-21. For n = 5 we have: $A_n = 101$, $B_n = 151$, and the statement is true. In order to prove it for p > 5, it is sufficient to show that the greatest non-primitive divisor of L_{5p} , p > 5, is smaller than A_p , hence the greatest primitive divisor of L_{5p} is greater than B_p , hence both A_n and B_n have primitive divisors, and since $(A_n, B_n) = 1$, A_n has a primitive prime divisor a, B_n has a primitive prime divisor b, and a \neq b.

Now, the greatest non-primitive divisor of L_{5p} is $L_5L_p = 11L_p$, and we have to show that $11L_p < A_p$ for any prime p > 5. We shall show that $11L_n < A_n$ for any positive integer n > 5. The proof is based on the following two inequalities:

(1)
$$L_n < 3F_n$$
 (n > 2),

(2)
$$33 < 5(F_n - 1)$$
 $(n > 5)$.

Equation (1) is easily verified for n = 3, 4. If (1) is valid for n, n + 1, its validity for n + 2 follows by addition of the corresponding inequalities sidewise. Similarly (2) is shown. Hence

$$11 L_n < 11 \cdot 3F_n = 33 F_n < 5(F_n - 1)F_n = 5F_n^2 - F_n < 5F_n^2 - F_n + 1 = A_n.$$

This completes the proof.
