CONVERGENCE OF THE COEFFICIENTS IN A RECURRING POWER SERIES
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1. INTRODUCTION

In this paper we use the following notation

[0 o] k [0}
\'4 _ } : (k) w
E Cc._X = c. ' x ,
W w
w=0 w=0

W)

(For convenience, we shall write Cy instead of Cy

We define
f
waxw = F(x) # 0
w=0
for a finite f,
t m
w=0 w=1

for finite t and m, where the dW # 0 and are positive integers. The ry #

0 and are distinct and we say |ry| is the greatest |r] in the !rwl.

2. THEOREM 1

If

FE/QK = ) ux"

W
w=0

41
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then

. ! - s .
(2.1) nllgloo Iun/un—j l (for a finite j = 0,1,2," ")

converges to |r“, where the ry # 0 in Q) are distinct with distinct mod-
uli and |ry] is the greatest |r| in the Irwl.
Proof. It has been shown by Poincare [1] that

2.2) nl—i£>noo Uln/un—i

converges to some root (r) in Q(x). (We must then prove that this root (r)
in Q&) is |r¢].)
Let

b
(2.3) M = || a-r 0",

where the p, are positive integers or =0 and

d1+p1=d2+p2=“.=pw+dw=k (k=1’293s“')
for a finite w =1, 2, 3, **+, m.
Then,

m
MEQE) = | | G- 0" =¢. 6 ,
wW=1

so that

(2.4) FE)ME&)/QEIME)

F M ()/8, ()

v o] ¢ o]

Z cl, wx"

W0 w=0

I
N
éi

b

1
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where it is evident

u. = c(k,n)

Now let

v
¢>k(X) = Z cgi) " (where v is finite) ,

w=0

where combining this with (2.4), we write

Q0.
(2.5) FEIME/ ¢, _ ) = Z olk - 1, wx"
w=0
v o]
= Z chW Z c(k,w)xw) ,
w= w=0

and combining coefficients leads to

v v
(2.5.1) C(k -1, n) = Z c(k,n - W)CW = Z un_w CW ’
w=0 w=0

k=2,3,4,"--

In (2.5.1), we replace k with k+1 (where k =1,2,3,---) where
combining this result with (2.2) leads to

ngnw fetk + 1,n)/clk + 1,n - 1)| converges to some root (r) in Q).

For convenience, we write the convergence as

(2.5.2) ck+1,n) = gk+1c(k+1,n—1) .
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Combining (2.5.1) with k replaced by k+ 1 with (2.5.2), it is easily shown,
that for a finite v, we have

(2.5.3) clk,n)/clk,n - 1) = 8,
v v
= Zc(k+ 1,1[1-w)cW Zc(k+1,n—vv—1)cW
w=0 w=0
T By
so that
(2.5.4) gk+1 = gk = se e = g1 .

Thus to complete the proof of Theorem 1, it remains to show that

[g1] = |rd] -

Then we consider the following (we refer to (2.3) )

m : -
(2.6) (9&)7! = ﬂ‘r (1- rwx)_1 = Z e(m, w)x" (for a finite m)
w=1 w=0

for the convergence properties of e(m,n)/e(m,n - 1), where the |rW| are
distinct and |ry| is the greatest root.
NOTE. For convenience, we write

em,n)/e(m,n - j) = rJ1 (for a finite j = 0,1,2,:-+),

in place of

nligoo Ie(m, n)/e(m,n - j)| converges to lr” :
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For m = 1, we have

e.2]

@2.7) (1-r) " = Z e, w) x" ,
w=0
where
e(l,n) = r? )
so that
e(l,n)/e(l,n - j) = rJi
For m = 2, we have
o0
(2.8) (@ -1 Q-10]" = Z e2,w) x"
w=0
where
e@,n) = @7 - 2/ - 1)
so that

(2.9)

e2,n)/e(2,n - j) = ri

It now remains to consider for finite m = 3,4,5, -

t-1 -1 t
(1 —Z asxt-s> =T]_ - I‘SX)_1

s=0 s=1

for a finite t = 3,4,5, **°, where U, = 1.

9

, let

[e.]
1 +Z USXS ,

S=

45
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Equating the coefficients in this leads to

t
(2.10) Un = E 2 g Un-s (Ug = 1) ,
s=1
and
t-1
Uy = Up A_q + Uy = Uy at_1+U0 at—Z’W’Utz E Usas .
s=0

Algo, since in (2.9), we have

-1
ll(l-rx) --1Zasx .
s=0
we may write
t -1
(2.11) ii(x—r)=xt—z ax> = 0
’ ' 8 s
s=1 g=0

We now combine (2.10) with (2.11) and write
t -1 t-8
(2.12) X Ux Z( Z Uraf;ﬂ' S)x
r=1
Multiplying (2.12) by x and combining the result with
t-1

U1xt = Uy E asxs

g=0
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in (2.11) leads to

t-3 r
B b1 X t-1-2
{2.13) x' = Upx FE A (Ur—kg ‘z :Ur+z-sat—s-1>x

=0 S0
-+ Ujao .

Now, multiplying (2.13) by x and combining the result with

t-1
Uth = Uz ( E aSXS>
s=0 4
in (2.11), we then have
t-3 T
t+2 -1 t-r-2
@.14)  x' = U +Z : (Ur+4 _Z Ur+3—sat—s—1)x
= 8=0

+ aoUz B

We continu€ in the exact way we found (2.13) and (2.14) for n - 1 steps to get

' t-3 iy
tHn-1 _ -1 N t-r-2
(2.15)  x = Up* +§ : (Un+r+1 z :]“jn+r—sa1:—s—1>X
=0 s=0
_ -1
+ Un--ia‘) = Ux "+ R(x) + U _2 -

We now continue (2.185) with (2.11) to get the following t equations

tn-1
ry

t-1
UnI"1 + Rlry + Un___1 ay »

(2.16) e e e e e e e e s e e e e ey

Ij:—l-n—-i =7 rt—:!, + R(rt) + T

t nt n-1 20 *
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Next, we consider the t equations obtained from (2.16). These t equations

in the t unknown can be solved by Cramer's rule to obtain
(2.17) UnD2 = Di(n) ,

where D;j() and Dy are the determinants given below:

. ttn-1 t-2
ry ry ry 1
(2.18) Difm) =| :
t+n-1 t-2
rt I't rt 1
TS LTS o I |
(2.19) D, =
t-1 t-2
rt rt rt 1

We now replace n with n -1 in (2.17) to get

(2.20) U, ,D: = Dia-1),

and dividing (2.17) by (2.20), we get
(2.21) U_/U__ = Diy) /Dik - 1)

Since the ry # 0 and are distinct, then one root (say |r1| is greater

than the other roots, and we write

(2.22) U /U = D) /i) ye-1)/e )

Now in (2.22) we let r}+n_2 (in the numerator) divide every term of the first

column in (2.18) and ri:+n—-2 (in the denominator) divide every term in the first
column of (2.18) (with n replaced by n - 1). Then if we let n > itis evi—

dent that
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(2.23) n]igloolUn /Un—il = Iril .

Now for a finite t we write

It LA /Un—j—ll =y (G =0,1,2,0+,t-1) ,
so that
. Z |t
(2.24) n131>11w|Un /] = |

Multiplying the F(x) in (1) with

in (2.9), we write

f 0 o0
(2.25) <Z waw><z sts> = Z Cq <,
w=0

5=0

where comparing the coefficients we have

. f
(2.26) C_ = E U b, .
n n-s s
=0

Now, since f is finite, and by the results in (2.23), we write

49
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where combining this with the r # 0 and are distinct (so thatwe may add that
the r

¢ have distinct moduli), leads to the completion of the proof for Theorem
1.

From (2.7), 2.8), and (2.17), the following corollary is immediate:
Corollary. If

t
ﬂ-(l Srx)t = ius 5 W, =1,

81 5=0

where the ry # 0 and are distinct, then

(2.27) It is always possible to solve for the U, m=0,1,2,""")
as a function of the r
SECTION 3
Let
¢ ko w
2 w _ I I -k _ § : k) _w
1- a, X = a- rwx) = c, X
w=1 w=1 W=0

(cék) =1 and k=1,2,3,-+) for a finite t = 2,3,4,--

and the given roots
ro # 0 and are distinct. We also define

t t
a - 2 : 2 : w-1 _
St) A lhtw-r" 0

wW=1 r=w

and
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where *x; # 0 and is a rootin S®®) = S(x;) = 0.
We then have the following:
Theorem 2. If

cp =1, ¢y = ajeg, cy = ajyeq + asey,

t-1
A Z B+t Ct-w-1
wW=0

and
pJ =a1(k+n_j) (j=1,2,39”'9n) ?
Aty = bh-m)@k+n-m-1)
(m=13233"":n_1)
then
k& , k) _ -
(3.1) ne /cn_1 = En /Gn k,n=1,2,3, )

where En and Grn are the determinants given below.

P1 d2 0 0 0
-1 pp @ O 0

(3.1.1) g =0 1 ®m @ 0

0 0

0 0

0 0

0 0

-1 Ppy
0 -1

51

el

*1t should be noted that since the a's are constant for a fixed t, that the root

xq will be determined as a variable, since it is a function of the c

of course, change values for different n.

and will,
n
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P2 a3 0 0 0 0 0 0

-1 Ps3 o7} 0 0 e 0 0 0

0 -1 pg g5 O e 0 0 0
(3.1.2) Gh=lo o -1 p g 0o 0 0

0 0 0 0 0 -1 Py, q

0 0 0 0 0 0 -1 pn

Proof. Let
t n

(3.2) 1 = (1 -Zawxw) ( Z Cy xw> (for a finite n) ,

W=1 wW=0

where the a and the ¢, are identical to those in (3). Then multiplying and

combining the terms in (3.2) leads to S{xy) = S(x) = 0 in (3).
Now, taking each side of (3.2) to the kth power, we write

t S n
(3.3) 1k = 1 —Z awxw Z cévk) <V J(x)
w=1 w=0

(k=2,3,"'),

(where, of course, xy is a root in (3.3) ).

Using the corresponding values in (3), we write (3.3) as

n
(3.3.1) 1=@-ax-b)s Z BV 56
wW=0

Differentiation of (3.3.1) leads to

n n
k(asx + 2bx?) Z cr(lk) +Ix = 1- a,x - bx? )(Z 1‘101(11{)xn
w=i

W=0

+ W(x)
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and by comparing coefficients, we conclude that

(3.4) ncr(lk) = ayk +n - 1)<:I(1k_)1 + b(2k +m—2)cr(lli)2
for
k=284, n=23,-+-, cék) =1 and cgk) = aik .
When we divide (3.4) by cx(lk_)1 , we get
nc(k)
B = agktn-1) L b@ktn - 2)(1({‘)1‘ D k=23,
c n - e
n-i n-{
Ciki
n-2

which in tarn, along with cék) =1 and c§k) = a4k,

values of p and q in (3)),

k)
ne o5 ds q q,
n n-1
. = [ N A T Sl S g
(3.5) C(k5 P15 7 b Pp, Py Kin)
n-i !

We complete the proof of Theorem 2 with Euler's statement [2]
K@) = E /G, ;

and we resolve for the case when k = 1 with (2.27).
Corollary. In

t t -k

-k w _
l-r x) = [1- a_x = 1+
w w
W=t

=1

[
QO@
"

it is always possible to solve for

),

53

implies (along with the
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(3.6) ncr(lk) /cr(lli)1 = Km) = En /Gn k and n =2,3,-+°)

when t = 2,3,4, or 5, if the ro # 0 and are distinct.

Proof. In (2.27), it is seen that the ¢  maybe determined. Now, since
t-1=1,2,3, or 4, then the roots (each root is a function of the cn) in
S() (in 3) may always be found, so that we will obtain values for the p and
q. We then complete the proof of the corollary by observing that En and Gn
are both functions of the p and q.

In conclusion: We solve when t = 1 and we write
k _ R (k) (k)
t-r.)° =§ d; x" @ =1 r#0 .
w=0

Now, differentiating, we have

] [«
xkr ( Z d‘(NkH)xw) = Z wdg{) "
w=1

wW=0

and comparing the coefficients leads to

nd(k) _ gqlkt1) rk
n n-1
so that
n n-i
wd, en-w) _ ™ (k+n-w-1)d (ktn-w)
I I w I l w
w=1 w=0

and we then have

dg‘)’ = Pk +n- 1! /n! (k- 1)
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