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1. INTRODUCTION 

In this paper we use the following notation 

oo \ k oo 
w 1 \ ^ (k) w 

„ 1 _ X c x 
w Ev* -E 

k w=0 / w=0 

(For convenience, we shall write c instead of c . ) 
w w 

We define 

Evw = F ( x ) ^ ° 
w=0 

for a finite f, 

t m d 

£ v w = TT<i-v>w = «<*> 
W=0 W=l 

for finite t and m, where the d ^ 0 and are positive integers. The r w fi 
0 and are distinct and we say Jr^ is the greatest | r | in the j rwJ . 

2. THEOREM 1 

If 

F(x)/Q(x) = 2 ] u w x w , 
w=0 

41 
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then 

(2.1) lim iu / u .1 (for a finite j = 0 ,1 ,2 , ' • •) 
n—*>oo j n / n-j j J 

converges to | r j | 9 where the r ^ 0 in Q(x) are distinct with distinct mod-
uli and | rA j is the greatest j r | in the J r I. 

Proof* It has been shown by Poincare [ 1 ] that 

(2.2) lim u / u , 
n-^>oo n / n-i 

converges to some root (r) in Q(x). (We must then prove that this root (r) 
in Q(x) is (rj j .) 

Let 

m 
(2.3) MW = J J (l-rwx) W , 

w=i 

where the p are positive integers or =0 and 
w 

di + P i = d2 + p2 = . . . - p w + dw = k (k = 1, 29 3, • • •) 

for a finite w = 1, 2, 3, • • •, m. 
Then* 

m 
M(x)Q(x) = " P J (1 - r w x ) k = 0k(x) 

w=i 

so that 

(2.4) F(x)M(x)/Q(x)M(x) = F(x)M(x)/<^(x) 

- Ev* - !>•*' 
w=o w=o 
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where it is evident 

u n = c(k,n) . 

Now let 

4 ( x ) = \ cw (where v is finite) , 
w=0 

where combining this with (2,4), we write 

oo. 
(2.5) F W M W / ^ W - ^ c(k .- 1, w)xW 

w=0 

c. •w w 

Vw=0 / \w=0 

and combining coefficients leads to 

v v 
(2.5.1) cfc-l.n) =^cfcn-w)cw = £ V 

W=0 W=0 
k = 2 ,3 ,4 , - • • . 

In (2.5.1), we replace k with k + 1 (where k = 1,2,3, •••) where 
combining this result with (2.2) leads to 

11m |c(k + l ,n)/c(k + l , n - 1)1 converges to some root (r) in Q(x). 
S l — ^ o o i B 

For convenience, we write the convergence as 

(2.5.2) c ( k + l , n ) = g k + i c ( k + l , n - l ) . 
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Combining (2.5.1) with k replaced by k + 1 with (2.5.2), it is easily shown, 
that for a finite v, we have 

(2.5.3) c (k ,n) /c (k ,n- 1) = gk 

v / v 
= y c ( k + l , n - w ) c iy c(k + l , n - w - l ) c 

w=0 / w=0 

= V i > 

so that 

(2-5.4) g k + 1 = gk = . . . = g I . 

Thus to complete the proof of Theorem 1, it remains to show that 

Then we consider the following (we refer to (2.3) ) 

m oo 
(2.6) (^(x))"1 = T T (1 - i ^ x ) " 1 = Y ^ e(m,w)xw (for a finite m) 

W=l W=0 

for the convergence properties of e(m, n)/e(m,n - 1)9 where the lr j are 
I W j 

distinct and | r j | is the greatest root 
NOTE. For convenience, we write 

e(m, n)/e(m, n - j) = ir (for a finite j = 0 ,1 , 2, • • •) , 

in place of 

Inn |e(m,n)/e(m, n - j) j converges to \rj | , 
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For m = 1, we have 

00 

(2.7) ( i » nx)" 1 = ^ e(1> w> x W > 

w=0 

where 

e(l, n) = r n , 

so that 

e ( l , n ) / e ( l , n - j ) = r j 

For m = 2, we have 

00 

(2.8) [(1 - rlX) (1 - rax)]""1 = ^ e(2,w) 
w=0 

where 

e(29n) = (rn' - r n )/(vt - r2) , 

w 
X 

so that 

e(2,n)/e(2,n - j) = rj 

It now remains to consider for finite m = 3, 4, 5, e 

/ ^ V1 t 

s=0 s=l 

for a finite t = 8,4, 5, •* 8 , where UQ = 1. 
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Equating the coefficients in this leads to 

t 

(2.10) Un = X X ~ s V s (U0 = 1> • 
s=l 

and 

t-1 
Ui = U0at ra l , U2 = Uiat r a l + U 0 a t ^ % U t = ^ U ^ . 

s=0 

Also, since in (2.9), we have 

t t-1 

TTVv> = i-Easxt"s • 
s=l s=0 

we may write 

t t-1 

(2.1D T f V v = x t - Z v s • ° • 
s=l s=0 

We now combine (2.10) with (2.11) and write 

s-1 
t-s (2.12) - ^ + E ( v E V H r - 8 ) 

s=2 V r=l r 

Multiplying (2*12) by x and combining the result with 

x 

t-1 Uixt = Ui S s 

s=0 
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in (2.11) leads to 

47 

(2.13) x t+i 
U 2 x t " 1 + E ( U r + 3 - E U r ^ s V s ^ j 

r=o s=o ' 

t - r -2 

+ Utao . 

Now, multiplying (2.13) by x and combining the r e s u l t with 

^ s=o 
a s x 

in (2.11)9 we then have 

(2.14) x t+2 
U ^ 1 + E ( U r h l - Z U r t - s V s - i ) 

. tr-Y-2 

r=o 

+ a0U2 

We continue in the exact way we found (2.13) and (2.14) for n - 1 s teps to get 

t-3 
(2.15) J**-1 - U n x M + 5 ] 

r=o 
u. n+r+1 JLJ n + r - s a t - s - i I 

s=o ' 

x t - r - 2 

> i + U a0 = U x ' - 1 + R(x) + U a. . n-i u n n- i o 

We now continue (2.15) with (2.11) to get the following t equations 

r'+n_i = V*"1 + R(ri) + Vl a° ' 
(2.16) 

rt+n-i = t - l + R ( } 
n t 
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Next, we cons ider the t equations obtained from (2.16). These t equations 

in the t unknown can be solved by C r a m e r f s ru le to obtain 

(2.17) U D 2 = Dl (n) , 

where Djdi) and D2 a r e the de te rminan t s given below: 

(2.18) 

(2.19) 

Dt(n) = 

D, = 

- t+n-

t+n-
r t 

t~i r j 

•r* 

-1 

-1 

t-2 

*r :-
t-2 

r i 

t-2 
r t •• 

r i 

' r t 

r j 

" r t 

1 

1 

l l 

1 

We now rep lace n with n - 1 in (2.17) to get 

(2.20) 

and dividing (2.17) by (2.20), we get 

IT D2 = Dj (n - 1) , n - i L 1 

(2.21) U n / U n - i = D l ( n ) / D l ( n " 1] 

Since the r ^ 0 and a r e dist inct , then one root (say | r i | i s g r e a t e r 

than the o ther roo t s , and we wr i t e 

(2.22) t+n-2 ^ t+n-2^ U n / U n - i = ( D i ( n ) / r p ^ ) / ( D 1 ( n - l ) / r r 1 1 ^ ) 

t+n—7 Now in (2.22) we le t r i ' (in the numera to r ) divide every t e r m of the f i r s t 
t+n—2 column in (2.18) and rA (in the denominator) divide every t e r m in the f i r s t 

column of (2.18) (with n rep laced by n - 1). Then if we l e t n ->oo i t i s e v i -

dent that 



1969] 

(2.23) 

IN A RECURRING POWER SERIES 

lim tU /U ! = I r J . n ->oo| n n- i | 1 | 

49 

Now for a finite t we write 

lim U . /U . n -> oo I n-j n-j-i r J (j = 0 ,1 , 2, • • •, t - 1) , 

so that 

(2.24) lim U /U J n ^ool n n-tl 

Multiplying the F(x) in (1) with 

uu 

S=0 

in (2.9), we write 

(2.25) 
w=o / \ s=o / s=o 

C xS , s 

where comparing the coefficients we have 

(2.26) n Z-^ n-i b 
s s 

s=o 

Now, since f is finite, and by the results in (2.23), we write 

C = ri Y ^ U b = ri C 
n * / J n -s - i s 1 n-i * s=o 
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where combining this with the r ^ 0 and are distinct (so that we may add that 
th 
1. 
the r, have distinct moduli), leads to the completion of the proof for Theorem 

From (2.7), (2.8), and (2.17), the following corollary is immediate: 
Corollary. If 

t 

s=i s=o 

where the r ^ 0 and are distinct, then 
s 

(2.27) It is always possible to solve for the U (n = 0 ,1 , 2,* • •) 
as a function of the r . 
——— — s 

SECTION 3 

Let 

-k 

w=i / w=l w=o 

t oo 
„(k) w cw x 

(CQ = 1 and k = 1, 2, 3, • • •) for a finite t = 2, 3,4, • • • and the given roots 
r ^ 0 and are distinct. We also define 
w 

t t 

^r^n+w-r" 
s(x) = Z E a-c— ~xW_1 = ° 

w=i r=w 

and 

b = Z a w x 7 W-2 
a ;" 
w 

W=2 
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where *Xi ^ 0 and is a root in S(x) = 8(xt) = 0. 
We then have the following: 
Theorem 2. If 

c0 = 1, ci = aic0, c2 = atcj + a2c0, e •e 

t-i 

and 

3t ~ J L w+i t-w-i 
w=o 

p.. = a4(k + n - j ) (j = 1, 2, 3, • • •, n) , 

then 

(3.1) 

qm+i = b*n " m ^ 2 k + n ~ m ~ ^ 
(m = l , 2 , 3 , - - - , n - l ) 

nc ( k ) / c ( k ) = E /G (k, n = 1, 2, 3, • • •) , 
n ' n-i n ' n 9 

where E and G are the determinants given below. n n 

(3.1.1) E = n 

Pi 

- 1 

0 

0 

0 

0 

02 

P2 

- 1 

0 

0 

0 

0 

qa 

P3 

- i 

0 

• 0 

0 

0 

q4 

P4 

0 

0 

0 

0 

0 

q5 

0 

0 

0 

0 

0 

0 

- i 

0 

0 

0 

0 

0 

p n - l 
- 1 

0 

0 

0 

0 

% 

p 

*It should be noted that since the a! s are constant for a fixed t, that the root 
xi will be determined as a variable* since it is a function of the c and will, 
of course, change values for different n- n 
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|P2 qs o o o 

1-1 P3 Q4 0 0 

-1 p4 q5 0 
(3.1.2) G = 

n 

0 

0 0 -1 p5 q6 

0 0 0 0 0 

0 0 0 0 0 

0 0 

0 0 

0 0 

0 0 

[Feb 

0 | 

0 

0 

0 

Proof. Let 

(3.2) 1 = 1 IvjfE 
W=l ' \ W=0 

C X 
w 

w 

- 1 V i \ \ 
0 -1 p 

(for a finite n) , 

where the a and the c are identical to those in (3). Then multiplying and 
combining the terms in (3.2) leads to S(xi) = S(x) = 0 in (3). 

Now, taking each side of (3.2) to the k power, we write 

vk 

(3.3) 1" = 1 •E 
w=i 

w a x w 

( k = 2 , 3 , - - ) , 
vw=o 

(where, of course, xj is a root in (3.3) ). 
Using the corresponding values in (3), we write (3.3) as 

(3.3.1) 1 = (1 - aix - bx' 
\w=o 

( k ) X W
+ J ( K ) 

w 

Differentiation of (3.3.1) leads to 

k(alX + 2bx2) I ^ c^k) + J(x) j = (1 - axx - bx* )l ^ nc£k)xn 

\ w = i 
+ W(x) 

<w=o 
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and by compar ing coefficients, we conclude that 

(3.4) nc^ k ) = a i ( k + n - l ) c ^ + b(2k + n - 2)cf^ 

for 

k = 2, 3 , . . . , n = 2, 3, • • - , e0
(k) = 1 and c | k ) = ajk . 

(k) When we divide (3.4) by c , we get 

n c ( k ) 
n /i . i \ _. M2k + n - 2)(n - 1) , . 0 0 v - 7 0 - = a ! ( k + n - l ) + —Tgr ™ (n,k = 2, 3, • • •) , 

c (n - l )c 
n - i n - i 

^ ~ 
n-2 

which in turn, along with CQ = 1 and ci = aik, impl ies (along with the 

values of p and q in (3))9 

(k) 
nc q 2 , qs , , q n - i . %. (3-5) Jr =̂  + ^ + ?r + - + ^ : : + ^ = K(n)-
V i - n - i ' n 

We complete the proof of T h e o r e m 2 with E u l e r f s s ta tement [2] 

K W = E n / G n ; 

and we re so lve for the case when k = 1 with (2.27). 

Coro l la ry . In 

TT«-v»-k-h-Zvw =1+£ 
w=i \ w=l / w=i 

t \ - k 
1 \ 00 - , ^ (k) w = 1 + > e x 

w 

i t i s always poss ib le to solve for 
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(3.6) n c n k ) / c S i = K ( n ) = E n / G n ( k a n d n = 2 s 3 f ' ' *) 

when t = 2, 3,4, or 5, if the r ^ 0 and are distinct. 
w 

Proof. In (2.27), it is seen that the c maybe determined. Now, since 
t - 1 = 1, 2, 3, or 4, then the roots (each root is a function of the c ) in 
S(x) .(in 3) may always be found, so that we will obtain values for the p and 
q. We then complete the proof of the corollary by observing that E and G 
are both functions of the p and q. 

In conclusion: We solve when t = 1 and we write 

( 1 - r ) " k = f V k ) x w (d<k) = l , r ^ O ) 
X f j W 

w=o 

Now, differentiating, we have 

w=0 ' w=i 
xkrf > d r ' V M = f ^ w d ^ k ) x w 

and comparing the coefficients leads to 

nd(k> o d(k + 1) r k 
n n-i 

so that 

n n-i 
^k+n-w) 
w 

w=i w=o 

J f w d f - w > = r n j j ( k + n - w - l ) d < 

and we then have 

d W = rn(k + n - 1)! /n! (k - 1)! 
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