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INTRODUCTION 

In 1915 Georges Fontene (1848-1928) published a one-page note [4] sug-
gesting a generalization of binomial coefficients, replacing the natural numbers 
by an arbitrary sequence A of real or complex numbers. He gave the fun-
damental recurrence relation for these generalized coefficients and noted that 
for A = n we recover the ordinary binomial coefficients, while for A - q11 

- 1 we obtain the q-binomial coefficients studied by Gauss (as well as Euler, 
Cauchy, F . H, Jackson, and many others later). 

These generalized coefficients of Fontene were later rediscovered by the 
late Morgan Ward (1901-1963) in a short but remarkable paper [16] in 1936 
which developed a symbolic calculus of sequences. He does not mention 
Fontene", Failing to find other pioneers we shall call the generalized coef-
ficients Fontene-Ward generalized binomial coefficients. We avoid the sym-
bolic method of Ward in our work, 

Since 1964, there has been an accelerated interest in Fibonomial coef-
ficients. These correspond to the choice A = F , where F is the Fibon-
acci number defined by 

F = F + F 
n+1 n n~l 

with 

F 0 = 0, F x = 1 . 

This idea seems to have originated with Dov Jarden [ll] in 1949. He actually 
states the more general definition but only considers the Fibonomial case. 
Fibonomial coefficients have been quite a popular subject in this Quarterly 
since 1964 as references [ l ] , [9] , [lO] , [13], and [15] will tell. See also 
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Because of the restricted nature of the three special cases of Fontene'-
Ward coefficients cited above, and because so many properties may be ob-
tained in the most general case, we shall develop below a number of very 
striking general theorems which include a host of special cases among the 
references at the end of this paper. Despite an intensive study of all available 
books and journals for twenty years , it is possible that some of our results 
have been anticipated or extended. Indeed certain notions below are familiar 
in variant form and we claim only a novel presentation of what seems obvious. 
However a large body of the results below extend apparently new results of the 
author [7], [8] and we obtain the following elegant general results: Represen-
tation of Fontene-Ward coefficients as a linear combination of greatest integer 
(bracket function) terms; Representation of the bracket function as a linear 
combination of Fontene-Ward coefficients; A Lambert series expansion of a 
new number-theoretic function; A powerful inversion theorem for series of 
Fontene'-Ward coefficients; and some miscellaneous identities including a brief 
way to study Fontene-Ward multinomial coefficients by avoiding a tedius argu-
ment of Kohlbecker [ l3] . 

The present paper originated out of discussions with my colleagues, 
Professors R. P . Agarwal and A. M. Chak, about the feasibility of extending 
Ward!s ideas to broader areas of analysis and number theory. Chak [3] has 
developed and applied Ward!s symbolic calculus of sequences to discuss num-
erous generalized special functions. 

Every result below can be immediately applied to the Fibonacci triangle, 
or new variants thereof, and the inversion theorem given below is expected to 
be especially useful to Fibonacci enthusiasts. Such inversion theorems are 
valuable tools in analysis and have not been previously introduced or applied 
for Fibonomial coefficients. We may even take our sequence A to be the 
non-Fibonacci numbers and study a non-Fibonomial triangle. 

FONTENE-WARD COEFFICIENTS: DEFINITION AND PROPERTIES 
By the Fontene-Ward generalized binomial coefficient with respect to a 

sequence A we shall mean the following: 
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and we also require that 

» {"} - o whenever k < 0 or k > n 

The sequence A is essentially arbitrary but we do require that A = 0 and 
A i- 0 for n > 18 Ward [16] took A = 19 and there is no loss of general-
ity in doing that. However we cannot in general simplify very much and we 
shall retain A1 as arbitrary,, One has only to multiply Ward's sequence by 
A- to obtain our resul ts . When no confusion can occur as to our choice of the 
basic sequence A we shall omit the subscript A in our notation (1). We use 
braces to set our coefficients apart from ordinary and q-binomial coefficients. 

With this definition we can now exhibit the Fontene'-Ward Triangle: 

1 
1 1 

A2 1 .-* 1 
Al 

A i A i 

1 t± A4A3 A4 -
Al A1A2 Al 

Ag A ^ A5A4 A5 -
Al A1A2 A1A2 Al 

1 \ V l A6A5A4 A6A5 t l i 
Al A 1 A

2
 A1A2A3 A1A2 Al 

tl V i A7A6A5 A7A6A5 A7A6 \ 1 
1 A1 AXA2 AjAjjAg A ^ A g A ^ A1 

It is evident that the triangle is symmetrical in the sense that 

We can make the definition (1) more symmetrical by introducing generalized 
factorials. We can define 
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(4) 

where 

fc}- — w |kjl [n - kjl 

M '• = Vn-i "• Vi wlth C°]'- = i • 

This is equivalent to the previous definition and allows us to adapt a number of 
familiar binomial coefficient identities to our study. For example, it is clear 
that we have 

(5) ft} {)) - {°l ft : » • 
which we shall need later. 

The basic recurrence relation for the Fontene-Ward coefficients was 
given by Fontene and is as follows: 

(6) \k) " \ k ) " { k - l j Ak 

In this, change k to n - k and apply (3), We find that 

© - { ! : » - M ^ 
In general A - A, J A , . The fraction does equal 1 when we set A. = j , 
and the fraction equals qK when we set A. = (qJ - 1) /(q - 1). Fontene" is cor-

i rect that we get q-binomial coefficients with A. = qJ - 1, but it is better to 
include the factor q - 1 in the denominator so that we can also assert that 

lim. A. = j 
q -> i J 

making the q-case then agree with ordinary natural numbers. 
In the Fibonomial coefficient case, when A, = F, , write 
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F - F. 
(8) f(n,k) - n K 

n-k 

It is easily verified that f satisfies the recurrence 

(9) f(n + 1, k + 1) = f(n,k) + f(n - 1, k - 1) . 

By induction it then follows that 

(10) f(n+ r, k+ r) = F^f^k) + Frf(n-l,k-l) . 

From this one may easily find 

F — 1 
(11) f(n5k) = F - £ d £ l _ + P 

n-k 

which may also be derived directly from (8) and the relation 

<12> F n = F k Fn-fcf 1 + F k - l F n - k ' 

There are then an abundance of ways to modify f(n9k) using known Fibonacci 
relations, and the particular way we might interpret f(n,k) determines the 
nature of the Fibonomial relations which will followfrom our general theorems. 

An important observation is this: f(n,k) is independent of n in the case 
of ordinary and q-binomial coefficients, but not in the Fibonomial case. This 
makes the possibility of having certain expansions generalize depend on the way 
in which we can modify the recurrence. 

We return to relation (6) and sum both sides with respect to the upper 
index. Clearly we obtain the relation 

which is the analogue of the familiar formula 
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3=k 

Relation (13) will.be very important to us in what follows. 
We next define Fontene-Ward multinomial coefficients in the obvious way: 

<i4) L k * . . . , k > 
n 

"A. 
1=1 l 

k- k k ' 
l ' "2 ' *'V 1 r.2 T 

TTA^TTA^-TTA. 
1 = 1 L = l 1 = 1 

subject to n = k +kQ + • - . + k . For A. = i these pass over to the ordinary 1 & r t 
multinomial coefficients. What is more, (14) satisfies the following special 
relation: Set r = 2 and write k = a, k = b with a + b = n, Then 

<15> {a"b} - {1} 
in terms of our original definition (1). Moreover, trinomial and higher order 
coefficients are products of ordinary Fontene-Ward generalized binomial 
coefficients: 

w> {..U - ft {" b" *} • • • - • • • 

<"» {. .b%.d}-ft>{nbm}{-rb}.»+^ '—• 

(18) {.,b,nc,d,e} - {:} f b l {°-r b }{" ' a d- b - o >- + b - + —. 
and the general result follows at once by induction. This is a well-known de-
vice for ordinary multinomial coefficients and the application here is that once 
one proves that the Fontene-Ward binomial coefficient is an integer for some 
sequence A , then the Fontene-Ward multinomial coefficients, by the above 
relations, are integers, being just products of integers. This circumvents 
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the tedius argument of Kohlbecker [13] for multinomial Fibonomial coef-
ficients, for example. 

Making use of the ideas developed so far and paralleling the steps in a 
previous paper [8], we are now in a position to state and prove our first major 
result. We have 

Theorem 1. The Fontene-Ward generalized binomial coefficient may be 
expressed as a linear combination of bracket functions by the formula 

ft)-[5]tEB]V'''-E[!]v.i. 
j=k+i j=k 

where the number-theoretic function R is defined by 

with /x(n) being the ordinary Moebius function in number theory. 
Proof. Again we use the formula of Meissel 

m<x 

and apply this to formula (13) precisely as was done in [8]. The result follows 
at once. It is easily seen that R,(k,A) = 1. There will be no confusion of 
R (j,A) with Rk(j,q) in the former paper if we merely make a convention that 
whenever we have a sequence we denote it by a capital letter and then (20) is 
meant. Thus Rk(j,F) would mean the Fibonomial case. Thus our first theo-
rem expands the Fibonomial coefficient as a linear combination of bracket 
functions. 

The expansion inverse to this requires a little more care . It was found 
in [8] by means of a certain inversion theorem for q-binomial coefficients. 
We must pause and establish the corresponding inversion principle for the 
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most general ease. Suppose we set 

(21) f(n) = ] T (-l)n~k \l\ g(k) 
k=0 

Then we find: g(0) = f(0). 

f(1) = -g(0) + g(l) , 

whence 

g(l) = f ( l ) + f (0) 

Then 

A 2 f(2) = g(0) - / g(l) + g (2 ) , 
A l 

from which we find 

g(2) = f(2)+ -£ f(l) + M - l ) f(0) 

Similarly it is easily found that 

[Feb. 

f(0) g(3) = f(3) + %L f (2)+ ^ ( ^ - l ) f d ) + ( l + ^ ( ^ " 2 ) j 

and it appears that the B, are independent of n and any number may be found 
in succession. This is quite correct, for we may readily solve the system of 
equations necessary to determine such B, coefficients as will invert (21). 
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The next step gives 

A 4 
B 4 = " 1 + A ;(-fc(S-i)-S@ 

Put 

(22) g(n) = 2 {k} Bk f(n " k) ' Wlth B 0 = B l = l j 

k=0 B 2 = A2 /A - 1, etc. 

It is easily seen by an inductive argument that B, is independent of f and n. 
On the one hand, (22) would require us to have 

n+1 n+1 
(23) g(n+i) = ETk1Bkf(n+i~k)=E{nr}Bn+i-jf«) • 

k=0 ]=0 

On the other hand we have from (21) that 

f(n + 1) = g(n + 1) + 5 3 ("1)n+1"k l ^ 1 } ^ ) > 
k=0 

whence 

(n+l) = f(n+l)-X;(-l)n+1-k{n;1}g(k) 
k=0 

-.^^5:^-k{':i}Eft>v*-»-
kpO j=0 
n n 

» « . -<*+»»+E«»2>"*{,,i1}fi}BM 
i=o k=j 
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This expansion must agree with (23) if the induction is to proceed, so we equate 
coefficients of f(j) to determine a recurrence relation for B. . At the same 
time we apply the identity (5) and we have the result that 

<24> v n = E <-i)n~k {nk-Y j K - j •for ° - j -n 

In particular set j . = 0. We find the remarkably simple recurrence 

n 
(25) B n + 1 = ] T (-l)n~k j n + 1 | B k , valid for n > 0 . 

k=0 

From this it is easily seen that we can summarize our recurrence for 
B in the single formula 

V / -\\n"k / n l -R _ 1, for n = 0 , ( 2 6 ) LJ e i ) \ k / B k " 0 , for n > 1 . 
k=0 

This in turn can be given a handy symbolic expression 

if we just adopt an umbral binomial theorem that 

l x + y } n =S{k}xkyn-k • 
k=0 

We shall next evaluate the B coefficients explicitly. 
The sequence B is determined uniquely by the relation (26), and we 

can easily solve this by means of determinants. The result of this can be put 
in the form 
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1-1 1 0 0 

1 - O 1 

1-1 (-1) n {1} -{» 

•i)n, -H)n {?}. <-i)n$. 
' \ n - 2( 

' \n - 2f' ~\n - 1/ 

valid for n .> 1. 
The n-by-n determinant and the recurrences (25)-(26) allow us to com-

pute as many B's as needed. 
It was no accident that we write (26) as (27) and as a Kronecker delta, 

for not only does (26) allow us to invert (21) to obtain (22), but the converse is 
also true, (26) allows us to invert (22) back to (21). We have in fact 

Theorem 2. For sequences f and g, 

(29) f(n) = 2 ( - 1 ) n ' k { S } g W 
k=0 

if and only if 

(30) g(n) =E{k1Bn-kf<k> • 
k=0 

where B, satisfies recurrence (26), and is given explicitly by (28). 
To illustrate the proof we will show that (30) implies (29), assuming 

(26). We have 

k=0 k=0 j=0 

-Efi}<®E«-i>,H"k{\",K-«« 
j=0 k=0 
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as required, for relation (26)-(27) is equivalent to the Kroneeker delta 

k=0 

The reader should have no difficulty in showing that (29) implies (30), 
relation (31) again being what is needed to cancel out unwanted terms. 

These relations are nothing more than extensions of the familiar inver-
sions given in [6 ] , [ ? ] , [ 8 ] . 

The application and use of Theorem 2 for Fibonomial expansions needs 
little elaboration. It allows often to solve for something given implicitly un-
der the summation sign. 

As was done in [6] and [8] we need some small variations of Theorem 2. 
It is easy to see that the theorem can be stated in the equivalent form 

(32) f(n) = ^ K ) k { k } g ( k ) 

k=0 

if and only if 

(33) g(n) = £ K)k {1} Bn„kf(k) 
k=0 

And we also have 

(34) f(n) = Y^{k} g(k) 

k=0 

if and only if 



WITH APPLICATION TO FIBONOMIAL COEFFICIENTS 35 

*<-> - E ™** {1} Bn.tf« . 
k=0 

It is this las t fo rm of our theorem that will be used now to find an expansion 

inverse to T h e o r e m 1„ Our s teps a r e the s a m e as in [ 8 ] , 

T h e o r e m 3, The b racke t function m a y b e e x p r e s s e d as a l inear combina-

tion of Fontene-Ward genera l ized binomial coefficients by the formula 

j=fcM ]=k 

where the coefficients Q, (j,A) a r e given by 

J 

d-=k 

and the B ! s a r e given by (26)-(28). 

Proofo Assume expansion (36) for unknown Q'se Then by the invers ion 

p a i r (34)-(35), with f(n) = [ n / k ] and g(n) = Q, (n,A), and wri t ing j for k 

in (34)-(35), the r e su l t is immedia te , 

Hence as a Fibonacci i t em, this t heo rem allows one to e x p r e s s the 

b racke t function in t e r m s of Fibonomial coefficients. 

The next o r d e r of work in [ 8 ] was to see if the two expansions , b racke t 

in t e r m s of binomial and converse ly , implied a m o r e gene ra l inversion theo -

r e m ; i 8 e „ , whether we can now show that our coefficients R and Q a r e 

orthogonal in g e n e r a l . Our succes s in doing this would depend on getting the 

Lamber t s e r i e s for R and an inverse s e r i e s for Qe The binomial t heo rem 

was used to obtain the l a t t e r in [ 8 ] and this expansion, the binomial t heo rem, 

is m o r e t roublesome in our genera l s i t u a t i o n However we can obtain next the 

Lamber t s e r i e s for R, 

Let us note a gene ra l s e r i e s l emma: F o r a function f = f (x ,y) , 

1969] 

(35) 

(37) Qk^A)=E(-i)j"dla 
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oo oo oo 

<38> ZE f ( d ' n ) = ZZf(d,md) 
n=l din d=l m=l 

This is merely the limiting case of relation (20) in [7] for example. 

Theorem 4. The Lambert series expansion for R, (j,A) is given by 

x1 
(39) . ~ , *, 

00 A.. - A . 

& M r 5 - ? ^ ( - ^ 
Proof. First of all the ordinary Moebius inversion theorem applied to 

relation (20) inverts this to yield 

k din 

which may itself be looked on as a valuable expansion of the Fontene-Ward 
generalized binomial coefficients in terms of the function R,(d,a) . This is 
merely the generalization of the combinatorial formula 

°kW = (£:!) =ZX(d> • 
din 

found in [ 7] . 

Multiply (40) through by x11 and sum both sides on n, We find 
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° ° V A - A 

n=l K n=l din 
A) 

go WJ 

= ] C S x i n d Rk(d'A) > by (38> > 
d=l m=l 

_°°. °° d 

= £ vd'A> Exmd = X X ( d > A> T 2 ^ d=l m=l d=l 

The lower limits of summation in the result can be changed to k instead of 1 
since the Fontene-Ward coefficients and R, are each zero for the first k -

k 
1 terms on each side. This proves the theorem. 

We have given some detailed steps to illustrate precisely what happens. 
But let us now try to carry over the binomial theorem. It turns out that we do 
not need the binomial theorem in a very strong form. 

To find the series expansion inverse to (39), we recall the bracket func-
tion series (of Hermite) from [8] ; 

^ LfcJ (l - x) (1 - x*) 

Substitute the expansion of [n/k] in terms of Fontene-Ward coefficients, and 
we get 

(42) 
,_k 

n=k j - k 

k °° 

j=k n=j 

The last inner sum is not conveniently put into closed form by a binomial theo-
rem, but we can transform it as follows: 
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n=i n=i+l x 7 

and we can now apply the or iginal Fontene r e c u r r e n c e (6) and we r eca l l that 

A = 0 so that x* can be counted in the s u m . The re su l t is the formula 

co GO x A - A 

,43, ' - I E U K - S ' I ; : ! } - 8 ^ 1 • 
n=j n=j 

This formula is the g e n e r a l counterpar t of the f ami l i a r formula 

(1 - x ) 
00 

- , , (1 - x)3 

n=j x ; 

used in [ 7 , p p . 2 4 1 , 2 5 2 ] , The corresponding q-analog in [ 8 , p . 407] was 

( 1 - x ) E [ j ] x n = x3fl"(1-xqi) • 
n=j i=l 

The r e a d e r may find it in teres t ing to find the corresponding Fibonomial f o r m . 

Final ly , we subst i tute expansion (43) into (42) and we find the formula 

inverse to (39); i . e . , we have proved 

Theorem 5 . The coefficients Q,(j ,A) satisfy the genera t ing expansion 

1 X j=k n=j J 

We may write the two expansions of Theorems 4 and 5 in the forms 
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xJ 
(45) XXG'A ) ~~J = f(X'k) ' 

j=k 1 ~ 

and 

00 Jj 
(46) ^ Q ^ ^ J f ^ x J ) = — ^ , 

where f (x, j) is the power series 

n=j j n=j 

and we may now see easily that substitution of (45) into (46), and conversely, 
yields our desired orthogonality of R and Q9 Thus we evidently have 

Theorem 6. The functions R and Q as defined by (20) and (37) satisfy 
the orthogonality relations 

n n 

(48) X X ( j ' A ) Q j ( n ' A ) = 8 k = ^ Q k ° ' A ) R j ( n s A ) ' 
j=k j=k 

Consequently, we also have proved the very general inversion theorem for two 
sequences that held for the previous cases [ ? ] , [ 8 ] . That is we have 

Theorem 7. For two sequences f(xsk,A), g(x,k,A), then 

(49) f(x,k,A) = ^ g(x5j,A)Rk(j,A) 
k<j<x 

if and only if 



40 
THE BRACKET FUNCTION AND FONTENE-WARD 

GENERALIZED BINOMIAL COEFFICIENTS [Feb. 

(50) g(x,k,A) = 2 ^ f(x,j,A)Qk(j,A) . 
k<j<x 

CONCLUSION 

In the present paper we have given a sequence of seven main theorems, 
generalizing all of the corresponding results previously found for ordinary and 
q-binomial coefficients to the most general situation for Fontene-Ward gener-
alized binomial coefficients. As a single byproduct we have results universally 
valid for the popular Fibonomial triangle. The inversion theorems given here 
are expected to suggest other inversion theorems in the most general setting, 
which can then be applied to any special case that is covered by the Fontene-
Ward Triangle. 
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