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I. INTRODUCTION

K. Subba Rao [4], and more recently V. C. Harris [1] have obtained

some identities involving Fibonacci Numbers Fn defined by
Fi =1, Fz = 1, Fn = Fn_1 + Fn-z n=3,.

Our object in this paper is to obtain similar results for the generalized Fib-

onacci Numbers Hn as defined by A. F. Horadam [2],
Hy=p, Hyp =p+gq

and

The numbers p and g are arbitrary. By solving the difference equation for

HI1 by the usual procedure it is easy to see that

H o= 1 [a"-mb®]  [3]

n 2 ‘\/3
where
1=20p-qgb), m = 20p - qa)

and a and b are the roots of the quadratic equation x* - x-1 = 0, We call

1+ a5 b_l—\/ﬁ
- 2

so that
66
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a+b=1 ab=-1, a-b= a5 .
By making use of these results we get

1+m = 2@p-q), 1-m =295,
$m =p?-pq - = e (say.

It is also easy to see that Hn = pFn # an-l where Fn is the nth Fibonacci
number given by

n_bn

5

SECTION 2

In this section we obtain certain identities for the generalized Fibonacci
numbers. From result (9) of [2] we have the identity

2 —1 H
H tH = @-9Hy ,-eFy 4.

In this relation putting r = 2,3, <°°, n in succession, adding and simplify—
ing, we arvive at the result

n
2 n
(1) Do HL = F [+ 20H +eF _ [+pa[-D7-1] .
r=1
Consider now H?..r—l = pFZr—l + qF2r_2 s0 that

n n n
DoHy g =D, Fo g ta) Ton o

r=1 == r=1

From the formula for Fn this sum reduces to
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n
(2) Z Hyp1 = Hpp - Hy+ Hy
r=1
n
@) Z HZr = H2n+1 - Hl
r=1

On the same lines we get the following identities

n
1
@ D Hyp =3 [Hsn'H2+H1]
r=1
n
=1
) D Hg =3 [H3n+1 - Hl]
r=1
n
1
©) D Hy =3 [H3n+2 - Hz}
r=1
n
(@) 2 Hy s = Fon-1Hap = Hy + Hy
r=1
n
®) D Hyp = FyHy
r=1
n
(9) Do Hyy = FpHy

r=1
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n
(10) D Hyp = ForgHy g - Hy
r=1
n
2 1
(1D 2o Hypq =5 [Hy (Hy y +Hy ) +2ne +q(q - 2p)]
r=1
n
2 1
(12) 2 Hyp = 5 [Hyp,y (Hy +Hy o) - 2ne - p(p + 29)]
r=1

Let us now consider product terms as follows:

n
1.2 2
(13) D Hy oHy y = F [Hyy g +Hy -ne - (p+a)fp+20)]
r=1
n
1.2 .2 2. 2
(14) D Hy gHy = 5 [Hy +Hy ., +ne- (" +q)]
=1
n
(15 S H, (H, .. =%[H, (H, +H, . )+3ne-pp+20]
2r-1"2r+1 5 2n+1" " 2n 2n+2
r=1

[y

n
(16 D HyHyrys = 5 [Hanyp®onyg +Hypyg) - 3ne - @+ 0@+ )]
r=1

Corresponding to the identity

for the generalized Fibonacci numbers we get in the generalized Fibonacci

numbers the identity-
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- r—k 2
@an Hr-—kHr-!-k 1) k
Now consider the sums
nh
8 Y H, JHy .o =% [Hy @, +H, )-Te- @+ 2pq+ 10g7)]
or-2fopig = F Hynyg Hynto p” + 2pq + 10q
r=1
n
) Y H, H .. =%[H @ ) + Tne - (p+q)(3p+q)]
or-1t2r+3 = 5 HopeaHonig " Hopua P
r=1

Evaluating the quantity Hk 1 k g We get

(20) Bl Bg = Hpyy + 1) Heiq
Therefore
H H, H = H3 + eH
2r-1 7 2r T 2r+l T 2r 2r

Hence

n

r=1 =]

After simplification this becomes,

n

@1 D Hyy (Hp Hyop = [(Hz 417 H ytely g -
r=1
n
(22) St ud = 2 (@ - ®H) +elfo-20)-

n
D Hpo g Hy Hpo EH tep Hy.
r=1

)]

0" }]
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Now
3 _ 3
Hop = ©Fgp+aFgp g -

On expanding the right side, taking the sum from v = 1 to n and simplifying
we get the relation

n
3 1 .3 3 .
(@3) 2 Hyp = 7 (W5 - HY) - Seliyy ) - Hy)]
r=1
n
2 1 2 2.
(24) Z HZrHZr—l T2 [ (HZnH2n+1 -4q HZ) * e(H2n—1 - Hl)]
r=1
n
2 _ 1 2 2 )
(25) D HyHy o= g [y (Ho g - Hia) + e, - Hy)l
r=1
n
2 1..3 3
(26) E Hop-1 = 7 [y - o)+ 3elHy, - o
r=1

From the formula for Hr we can find the sums of the following:

n
@7 D rH = nH ., -H o+H
r=0
n
(29) 3 0T, = [ {(n +DH - Hn_z} (3¢ - 20)]
r=0
n
(29) 20 0y, = 5 [0, tHy ) - 0+ 20)]

r=0
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n
T 1 n
(30) Z -1) H21'+1 =3 [(_1) (H2n+1 + H2n+3) * (2p—q)]
r=0
n
(31) D rH, = [nH211 - Hl:] - [H2n - HZ]
r=0
n
(32) 2 THypy = MHy - [H2n+1 - Hl]
r=0 '
n
(33) > DT, = : [(_1)n((n +1H, +nH, )= (H, _Hl)]
=0
n
(34 PO S [("1)n((n * DHppiq *0Hypg) - Hl]

r=0

It is easyto see that the list of identities given by K. Subba Rao can be extended
to Fibonacci Quaternions defined by
Q, = F +iF ,, +iF kKF ..

o2 T s

The author is very grateful toDr. J. Sethuraman for valuable suggestions.
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