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1. INTRODUCTION 

With an arbitrary sequence of (complex) numbers (a i = {a 0 ,a i , a 2 , ' • y 
we associate the (formal) power series 

(1.1) a(x) = £ a x11. 
n=0 

The definition is purely formal; convergence of the series neednot be assumed. 
The series (1.1) is usually called an ordinary generating function. 

Let (b } = {bo,b1jb29*e •} be another sequence and 

b(x) = E b x11 

n=0 

the corresponding generating function. We define the sum of ( a } and (b } 
by means of 

f a } + f b } = f c ) , c = a + b (n = 0,1,2,- • •) ; 1 nJ l n} l nJ n n n 

then clearly 

c&) = Yl c x = a^x) + b(x) 
n=0 n 

Similarly, if we define the product 
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by means of 

(1.2) p n = E a k b n _ k 01 = 0 . 1 . 2 . . . . ) . 
k=0 

then it is easily seen that 

00 

p(x) = £ p x n = a(x) b(x) . 
n=0 

The product defined by (1.2) is called the Cauchy product of {a } and (b }. 
In contrast with (1.1) we may define the exponential generating function 

00 

(1.3) A(x) - £ a xn/n! 
n=0 n 

which again is a formal definition. The product is now defined by means of 

(ll4) P» = k ? 0 ( k ) *k Vk; 

this is known as the Hurwitz product and is of particular interest in certain 
number-theoretic questions (see for example [15, p. 147]). 

One can develop an algebra of sequences using either the Cauchy or 
Hurwitz product. In either case multiplication is associative and commutative 
and distributive with respect to addition. Moreover the product of two se-
quences is equal to the zero sequence 

{zn} = {0,0,(V--} 

if and only if at least one factor is equal to {z }; thus the set of all sequences 
constitute a domain of integrity. 
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In the present paper, however, we shall be primarily interested in show-
ing how generating functions can be employed to sum or transform finite series 
of various kinds. We shall also illustrate the use of generating functions in 
solving several enumerative problems. For a fuller treatment the reader is 
referred to [18]. 

In the definitions above we have considered only the case of one dimen-
sional sequences. This can of course be generalized in an obvious way, namely 
with the double sequence {a } we associate the series 

00 OO 

(1.5) a(x,y) = £ E a x m y n . 
m=0n=0 m ' n 

Also factorials may be inserted as in (1.3). Indeed, there is now a certain 
amount of choice; for example both 

oo oo jxi n oo oo 
(1.6) E E a i ^ - , E E a x m yn/n! 

a re useful. As we shall see in Section 10, other possibilities also occur. 
More generally, we may consider 

(1.7) a ( x l 5 . . . , x k ) = £ a *i •• • \ 
n l f . . . ,%=0 19 K 

and its various modifications as in (1.6). Of particular interest in the theory 
of numbers is the Dirichlet series 

(1.8) E an /nS ; 
i n n=l 

the product is now defined by 

(1.9) p *= E a b 
*n r s 

rs=n 
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We may think of (1.8) as a generalization of (1.7). For let qi,q2J- • • ,qk de-
note the first k primes and let a = 0 unless 

n = qj1 q2̂  • • • qk • 

If we put 

it follows that 

a — a * n 
n f i , - - - , fk 

(1.10) £ a n / n s = a ( q r s
J . . . , q - s ) 

n=l 

where the right member is defined by (1.7). 
2. As a first simple illustration of the generating function technique, we 

take the binomial expansion 

(2.1) (1 + x) = \ I , ] x 
k=0 Y7 

where, to begin with, we assume m is a nonnegative integer. Combining 
(2.1) with 

(1 + x)11 = "= §(")" 
we immediately get 

It is to be understood that the binomial coefficient f, 1 = 0 if k > n or k < 0 . 



1969] GENERATING FUNCTIONS 363 

Each side of (2.2) is a polynomial in m and n. Since (2.2) holds for all 
nonnegative values of m9n it follows that it holds when m,n are arbitrary 
complex numbers. 

It is convenient to introduce the following notation: 

(a)n = a(a + ! ) • • • (a + n - 1)? (a)0 = 1 

It is easily verified that 

ft - <-»k ^ 
and that (2.2) becomes 

« <-k)s(a)s _ (b - a ) k 
(2,3)

 s to^^r = " ^ -
In (2.3) a and b are arbitrary except that b is not a negative integer. 

The formula 

/o• A\ v^ / -i\k-n/m\ / k \ j 1 (m = n) 
( 2 ' 4 )

 k ? 0
 {'1] \n) [n) = \ 0 (m * n) 

is very useful. The proof is quite simple. We may evidently assume m > n. 
Since 

0$-8M 
it is clear that the left member of (2.4) is equal to 

f ) k| M»k-°f::) • (:) <-«"-
and (2.4) follows at once. 
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As an immediate application of (2.4) we have the following theorem: 
If 

(2.5) b n = ? ("1)k(k)ak ( n = O ' 1 ' 2 ' " " ) 

then 

(2.6) a n = | o ( - D ^ b , (ri = 0 , 1 , 2 , . . . ) 

and conversely. 
It is of interest to express the equivalence of (2.5) and (2.6) in terms of 

generating functions. As above, put 

AW = E a n xn/ni , B(x) = £ b xn/n! 
n=0 

Then (2.5) becomes 

(2.7) 

while (2.6) becomes 

(2.8) 

" n ' 
n=0 

B(X) : 

A(x) = 

» —' \-~r 

= exA(-x) 

= e x B(-x) . 

It is easy to extend the above to multiple sequences. If 

m n .,i # \ / \ 
(2-9) a = E E <-l>J"*MfcW L. 

then 

m n 
(2.io) b m n = E E <-1>,*lT; v k n k 

m > n j=0k=0 *3 / ^ ' h 

viH-k/ml n l w i l l | a . 
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and conversely. Moreover if 

x
m ~ n J30 „Hi__n 

A(x,y) = T a i i , B(x,y) = V b •X-JT 
m,n=0 m ' n m l n ! mfS-0 m ' n m l n ! 

then 

(2.11) A(x,y) = e X + y B(-x 9 -y) 

and 

(2.12) B(x,y) = e x + y A( -x , -y ) 

3. As a second illustration we shall prove the formula 

-l„(*-k)(y+°-k)%l(y-^")Ui(y:- - k 
k k 

This result is a slight generalization of a formula due to Greenwood and Gleason 
[10] and Gould [9]. 

Put 

'*=
 k?ow(-n-k) \»~r V n = i:0(y"r%x-k)(y;-kk)-m 

~m 

Then 

£oA™>«m = k?o(k A+n" / J j > - k ) 

= | 0 f e ) ( y + r k ) t k ( i + t)n' 
t m 
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oo °° / \ °° / \ 
L . ,m n r x | .k v y + n - k yi , . n n n V n * U = ^ I k j * £ l n / ( 1 + « u 

m,n=0 k=0 \ / n=0 \ ' 

= a - u - t u r ^ E (J) tka-u-tu)k 

= (1 - u - tu)"y"X [ l + t(l - u - tu)] X , 

so that 

X / i J _ _ \ X 

(3.2) E A t m u n = ( 1 + t ) ( 1 - ^ 
A m,n ,., ^ vv+l 

m,n=0 ' (i _ U _ tuK 

On the other hand, 

\ 1 - t u / 

(y + r ) u r (i - tu^-y- 1 - 1 

p / y + r j u r ^ / y - x + r + k j t k u k 

V y> | y - x + n \ / y + n - k\ k n 
n t 'ok t 'o l k A n " k ) ' 

(1 - t u ) X
v + f = (1 - t u ) ^ " 1 

(1 - u - tu)y+1 

= E 
r= 
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so that by (3.3), 

(3.4) Z B tmu] m n _ (1 + t)A(l - tu) 
A ^ J 1 1 / I j. \ V + 1 

m,n=0 (1 - u - tu r 

Comparing (3.4) with (3.2), (3.1) follows at once. 
We remark that if we put 

[a,b,cj 
, F j d.ej = 

£ (a)k(b)k(c)k 

3*2"- - J " £0"EWkJ^ 

then (3.1) becomes 

/ n \ /y + n\ „ [ - x , - y , - m l = [ x j Iy + nl rx -y -n , -n , -m] 
I ml I n 13 2L-y-n,n-m+lJ \tri/ \ n / 3 2[_-y-n,x-m+l J 

which is a special case of a known transformation formula [1, p. 98, ex. 7] . 
4. A set of polynomials A (x) that satisfy 

(4.1) A^(x) = nAn_1(x) (n = 0 , 1 , 2 , - - ) , 

where the prime denotes differentiation, is called an Appell set. It is easily 
proved that such a set may be defined by 

(4.2) X) A n « ***** = ^ E a n zR/Rl » 
n=0 n n=0 

where the a are independent of x. Also it is evident from (4.1) that 
n 

n / \ , 
n-k (4.3) A ^ ) = g V ' 

This formula is sometimes written in the suggestive form 

An(x) = (x + a) n , 
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k 

where it is understood that after expansion of the right member, a is r e -
placed by a, . 

It also follows at once from (4.2) that 

(4.4) | o ( - l ) k ^ x k A n _ k ( x ) = a n . 

We may view (4.3) and (4.4) as an instance of the equivalence of (2.5) and (2.6). 
If a0 ^ 0, we may define the sequence (b } by means of 

n' 

<«> j^Kv.HJ £;S, 
or equivalency A(z)B(z) == 1, where 

B(z) = £ b zn/n! 
n=0 n 

It then follows from (4.2) and (4.5) that 

<4-6> xn = k4(k)bkVk<x) • 

As an illustration we take the Bernoulli polynomial B (x) defined by 
n 

xz °° 
(4.7) ^ f - = Z B (x ) zn/n! ; 

e -1 n=0 

the Bernoulli number B = B (0) is defined by 
n n J 

(4.8) - j i - = E B n z n / n ! 
e - 1 n=0 n 
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Since 

it follows that 

e z - 1 f zn 

(4-9) ^-g,Fh(j)Bn.kW 

By means of (4.7) we can easily obtain the following basic properties of 
Bn(x). 

(4.10) B (x + 1) - B (x) = nx11 , 

(4.11) Bn(l - x) = (- l)nBn(x) , 

k-1 , \ -
(4.12) £ B n ( x + f | = k nBn(kx) (k = 1,2,3,-••) . 

Closely related to B (x) is the Euler polynomial E (x) defined by 

xz 
(4.13) - £ _ = £ E(x) zn/n! 

2Z + 1 n=0 n 

Corresponding to (4.10), (4.11), (4.12) we have 

(4.14) En(x + 1) + En(x) = 2xn , 

(4.15) En( l - x) = (- l ) nEn(x) , 

*>H-
k-1 

(4.16) £ ( - l ) S E n (x + J ) = k n E n (kx) (k odd) , 
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(4.17) £ (-if B n + 1 (x + { ) = - | ± 1 En(kx) (k even) . 

For further developments the reader is referred to [14, Ch. 2] . 
5. Another important Appell set is furnished by the Hermite polynom-

ials which may be defined by 

9 °° 
(5.1) e 2 x z - z = £ H (x) z % ! . 

n=0 n 

Differentiating with respect to x we get 

(5.2) H^(x) = 2nHn_1(x) 

so that the definition (4.1) is modified slightly. If we differentiate (5.1) with 
respect to z we get 

£ Hn i 1(x)zn/n! = 2(x - z ) e 2 x z " z 2 , 
A n+1 n=0 

so that 

(5.3) H
n + l ( x ) = 2 x H

n
( x ) " 2 n H

n - l ( x ) (n > X) • 

z2 
Also, multiplying (5.1) by e , we get 

<5-4) (2x>n = 9 £ k!(n?2k); Hn-2k(x) ' 
2k<n 

In the next place it follows from (5.1) that 

T H (x) H (x) J i v = e 2 x ( u + v ) - u 2 - y 2 = e
2 x ( u + v ) - ( u + v ) 2 e 2 u v 

*-* n m n m!n! 
m,n=0 

0 °° oo k oo m n 
= e 2 u v £ H (x)(u + v)7n! = £ % ^ - £ H A W ^ T 

n=0 n k=b k !
 m * = 0 m + n m ! n ! 
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Equating coefficients we get 

min(m,n) . # \ / i 
(5.5) H (x)H (x) = £ 2kk! H ? H r a ^ . W 

k-=Q i k / U / m+n-2kv 

Similarl y we have the inverse formula 

min(m,n) , , / \ / \ 
(5.6) H _, (x) = V (-l)K2Kk! If) ( f ) H . (x)H . (x) . 

m+n | ^ 0 Ik I Ikl m-k n-k 

The formulas (5.5)s (5.6) are due to Nielsen [13]; (5C5) was rediscovered 
by Feldheim [8], The above proof is due to Watson [20] . 

Another interesting formula is 

(5.7) £ H (x)H (y) zn/n! = (1 - te'^expl43^ " 4 ( x ' + ?** j 
n=0 n n I 1 - 4z 2 ) 

We note first that 

£ H^(x)^L = £ H (x)^-LiL 
n^O n + k n I k ! n^O n n ! 

2x(z+t)-(z+t)2 

2xz-z2 2(x-z)t-t2 
e e 

2xz-z2 v^ TT / \ t e L Hk(x-z)FT 
k=0 K K' 

Equating coefficients, we get 

(5.8) £ Hn+k(x)zn/n! = e 2 x z _ z 2 H.(x - z) , 
n=0 

which reduces to (5.1) when k = 0. 
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Since, by (5.1), 

(5.9) H n W = ^ (-Dk
 k, ( / I 2k), (2x)n-2k 

we have 

£ H (x) H (y)z7n! 
n=0 n n 

<x> . *n-2k 
S £ <"« k ^ W , H n ( y ) Z

n 
n=0 2k<n K ' l n 4K'- n 

» . ._ ,n n+2k 

E (-l)k^£Hn + 2 k(y)( |?.L 
k=0 n> n=0 n + J K n-

g(_l)k^e4xyZ-4XV xz) 
k=0 K ' 4 k 

.«*-*«£ *,"££ W)» , , ^ 1 ^ «, . W"» 
4xyz-4x2z2 v / i \ k (2 k + 2s) ! 2k+2s ,„ . ,2k 

k g = 0 ^ if(2k)! (k + s); z ( 2y - 4xz) 

Since 

(2k)! = 22kk! ( f ) k , 

we get 
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^4xyz-4x2z2 y - j - k ^ k + s 22s 2k+2s 
k,s=0 s!k! (J)k 

2«"»z——"(2y _ 4xz) 2 k 

= e 4xy Z -4xV £ ( 1}k Z
2 k(2y - 4xz)2 k £ ( k + l>s ( 2 z ) 2s 

k4) k ! s=0 s ! 

= e4xyz-4x2z2 J ( _ 1 ) k z2k(2y - 4xz)2 k
 ( 1 _ 4 z 2 ) - k - f 

k=0 

"I = ( 1 - 4 x 2 ) exp^xyz - 4x2z2 - zH^ ' ***? } . 
' 1 - 4z2 ' 

~i 
= (1 - 4x2) % x p / ^ L ^ l S E L ± j d i 2 ! \ 

• I 1 - 4z2 f 

This completes the proof of (5.7). The proof is taken from Rainville 
[16, p. 197]. 

6. The formula of Saalschutz [ l , p. 9] , 

n (-n), (a), (b). (c - a) (c - b) (a i\ v ^ k k k n n 
A k! ^ W ~ <CVC - a - b J n ' 

where 

(6.2) c + d = -n + a + b + 19 

is very useful in many instances. 
If we replace c by c - n, (6.1) becomes 

f ^ k ^ k ^ k < d - a ) n ( d - b ) n 
( ) L E T ^ n l ^ = (d)n(d - a - b)n 

where now 

(6.4) c + d = a + b + l . 
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Now by <6.3) 

«> (d - a) (d - b) «> (d - a - b) n (-n). (a), (b). 
L n n n _ ^p n n y^ k k k 

_ _ ^ " ~ x ~ ^ _ " """nT X ^ k! (c-n). (d)~ 
n=0 'n n=0 k=0 k k 

°° (a) (b). . oo (d - a - b) 
V / i\k k k k v-* n n 

k=0 K " w k n=0 n# 

V / n.k ( a )k ( b )k k,, ,a+b-d 
k=0 K* w k 

Thus (6.3) is equivalent to 

(6.5) F(a,b; d; x) = (1 - x)d""a~b F(d - a, d - b; d; x) , 

where F(a,b; d; x) denotes the hypergeometric function. 
It is customary to prove (6.5) by making use of the differential equation 

of the second order satisfied by F(a,b;c;x). We shall, however, give an in-
ductive proof of (6.1) which we now write in the form 

n (-n), (a + n). (b). (c - b ) ( d - b) 
tia a\ V* k K K _ n n 
{ • } L, — k ' (c) Id) — TcTiai— 

k=0 K* lc'klcUk l c V a ; n 
where 

(6.7) c + d = a + b + l 

Let 

n / \ (a +• n), (b), 

s>.b.o,d) = E (-Dkm k k 
k=o W " ^ ^ " k 

where a ,b , c ,d satisfy (6.7). Then 
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S (a b c d) - V ( l ) k M ^ + n,+,1)k(b)k f , . k / n V ^ - ^ W ^ l *n+1 (a.b.c.d) - £ (-1) ^ j (c)k(d)k '& <"» ( k j - 7 5 J ^ ^ 
k+lv wk+l 

n , / \ (a + n+l) , (b), 
£ <-« k " 7 5 1 — W — ifc+k)(d + k) - (a+n+k + l)(b+k)}, 

k=o \ K / l c W w k + i 

Now put 

(c + k)(d + k) - (a + n + k + l)(b + k) = A(d + k) + B(c + k) , 

where A9B are independent of k. Then 

/fi Rv j (d - c)A = (c - b)(a - c + n + 1) , 
K*9*} j (c - d)B = (d - b)(a - d + n + 1) . 

It follows that 

Sn + 1 (a ,b ,c ,d) = A s n (a + l , b , c + l ,d) + ~ Sn(a + l , b , c , d + 1) 

Assuming that (6.6) holds9 we therefore get 

(c - b + 1) (d - b) B (c - b) (d - b + 1) 
0 / , , v A n n ± > n n Sn + 1(a,b,c5d) - - _ 1 _ T ) ^ ^ ^ + - - ( c ) n ( d + D ^ 

( c - b i l ) (d-b + 1) 
= - r i

n _ - i _ r JL± (A(d-b) (c-b+n) (d+n)+B(c-b) (d-b+n) (c+n)} 
l c ; n + l % + l 

By (6.8), 

(d - c){A(d - b)(c - b + n)(d + n) + B(c - b)(d - b + n)(c + n)} 

= (c - b)(d - b){(c - b + n)(d + n)(a - c + n + 1) - (d-b+n)(c+n)(a-d + n + l)} 
= (c - b)(d - b){(c - b + n)(d + n)(d - b + n ) - ( d - b + n)(c + n)(c - b + n)} 
= (c - b)(d - b)(c - b + n)(d - b + n)(d - c) . 

Therefore 
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(c - b)Q+1(d - b ) Q + 1 

Sn + 1 (a ,b ,c ,d) = (c)n + 1(d)n + 1 • 

which completes the induction. 
As an application we take (6.6) in the form 

k (-k).(a + k).(-a + b + c + 1). (a - b)k(a - c), 
(6'9) § —^inFi Dj(c + 1). } = TFl^c + Dk ' 

where now a ,b , c are arbitrary. Then 

«> (a), (a - b), (a - c) 
V k k k k 

,£- k! (b + 1). (c + 1),, X 

« xk ^ (-k).(a).+k(-a + b + c + 1). 
" & u £ 0 ji a,+ 1)^ + 1), 

<*> . (a)Q.(-a + b + c + 1). . °° (a + 2j). . 

3=0 J 'j 'j k=0 

so that we have 

™ (a), (a-b). (a-c) . . » . (a) (-a+b + c + 1) 

If we take a = -2n, x = 1; (6.10) reduces to 

2n (-2n)k(-2n - b)k(-2n - c)k Q (2n)! (b + c + 2n + l ) n 
( 6 , 1 1 ) £ ) k! (b + l)k(c + l ) k

 = ( _ 1 ) n! (b + l)Q(c + l ) n 

In particular, for b = c = 0, (6.11) becomes Dixon's theorem: 

(6.12) E <-l)kfeV = <-l) <*» . 
k=0 V 7 (n!)3 

-a-2 
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Note also that (6.10) implies, for a = -n , b = c = 0, 

377 

(6.13) fJP 2j<n (j!)3(n - j)! 

and in particular 

(6.14) 
k=0 2j<n (j!)3(n - j)I 

a result due toMacMahon. For other proofs of these formulas see [17, pp. 41 , 
42]. 

7. We now turn to some problems involving multiple generating func-
tions. To begin with, we take 

(1 - 2x - 2y + x2 - 2xy + y2) 2 = R l - x - y)2 - 4xyJ 

= ( 1 - x - y ) " 

r: i» 
4xy 

(1 - x - y)2 

_1 
2 

(xy)1 

(1 - x - y) 2r+l 

(2r + s+t)I a t V* P r l / \r V t^r + s+t j ! s t 

ifen, 
^ r!r!7m-r)! (n-r)2 

00 min(m,n) , , w 

E m n ^ (m + n)! x y ^ —-^ z-
m,n=0 

Since 

min(m,n) 
^ rJ r! (m - rJUn^rTl 

(m + n)l (m + n \ 
m / 

min(m,n) 

r=0 
n i i m + n )2 

r) ~ \ m j ' 

we have 
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2 "= t (mr)' 
m9n=0 \ / 

m n (7.1) (1 - 2x - 2y + x2 - 2xy + y2) = £ m ^ n xmyj 

m9n=0 \ / 

This is in fact a disguised form of the generating function for Legendre 
polynomials s 

-i -
(7.2) (1 - 2xz + z2) = £ P (x) zn . 

n=0 

However to save space, we shall not elaborate this point. 
One can extend (7.1) in various ways. For example , we can construct 

the generating function for the Jacobi polynomial 

It is known that 

(7.4) £ P M ( x ) z n = E ^ R ^ d - z + r)-Q( l - z + R ) ^ , 
n=0 

where 

R = (1 - 2xz + z2) . 

For a proof of (7.4) see, for example, [16, p. 140]. 
If we put 

u = -J- (x - l )z , v = x (x + l)z 

we have 

1 
(7.5) R = [(1 - u - v)2 - 4uv]2 



1969] GENERATING FUNCTIONS 379 

and (7.4) becomes 

(7'5' i .Ll J A * r -% + i SR ^ l - u + v + R j ^ d + u - v + R)"'3 

with R defined by (7.5). 
We shall now give a simple proof of (IS). Consider the expression 

(1 - x)J '"(1 - y)J 

j,k=0 J k ^ j r ,s=0 

^ -m n S JL (-m).(-n). (a + m + 1). (j3 + n + l ) . 

m,n=0 3=0 k=0 J k ^ j 

The inner sum is equal to 

m (-m) (j8 + n + 1) k (-n)k(tf + m + l ) k (-n)m (-m)n 

£ "-jT— (p + x ) • L k! (of + 1). = (j8 + 1) (a + 1) 
3=0 J v^ '3 k=0 'k ^ m n 

by (2.3), which vanishes unless m = n. It follows that 

Now put 

u = " 7i ^ T 7 T - — ^ > v - T\ _ v)(i" (mEjir^T)' v - nr^rnrr-yj • 
Then 
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and (7.7) reduces to (7.6). 
8. We shall now extend (7.1) in another direction, namely a larger num-

ber of variables. Consider first 

[,1 - x - y - z>* - 4^ , -K £ M *•>' , m 
r=0 \ / (1 = x - y - z) 

Since 

J-sW' , 1 . x - , - , ) - 2 ' - 1 . r 2 \ + k t* + y + z)
k 

y^ (2r + s+ t+u) ! s t u 

s,a=o <2r>!s:t!u! x y z ' 
we get 

i 

t«- x.,. # - «*.,-*. z $ w ^ ^ m ^ *• >* *-
00 min(m,n,p) / , , \. 
y^ m y p y* ^ (m+n+p-r)! 

m , n , p = l X y Z vk rtr!fci-r)!«a-r)!<p-r)l 

Now by (6.1) 

= (m + n + p)I 
m! n! pi 

(m + n + p) 
m! n! p! 

(m + n)! (m 
m!m! r 

Z 
r=0 

! ( n 

m! 

+ p)f. 
L! n! p 

r!r! 
r 

+ 1) (p m ^ 
<n + 

(n + 
!p! 

p + 

P)I 

r ' 
- n -

+ 1>m 

'^m 

r 

/ m + n j / n + p j / p + m j 
\ m A n A P / 
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Finally therefore we have 

(8.1) [ ( l ^x -y - Z )2 -4xyz ] -2 -= £ ( m + n ) ( n + P ) / P + m ) x m ya *P «"]*-JM1('*')('>m)"-
To carry this further a different approach seems necessary. In the 

expansion 

(1 - v) •"•U& 
replace v by v / ( l - w) and multiply by (1 - w)~ . Then 

(1 

w 

Next replacing w by w/( l - x), we get 

(i-w-x)1
 M = t E £ ( 1 1 3 ) j : k V k ; r VwV [(1 - V)(l - x) - w ] 1 + 1 j=0 k=0 r=0 

Now replace x by x / ( l - y). This yields 

(';<)(T)(kr)< 

•f oo oo oo oo 

(8.2) [(1 - w)(l - y) - x] = E E E E 
[(1 _ v ) ( l - x - y) - (1 - y)w] j=0 k=0 r=0 s=0 

• (ir)(^k)(k")(rr)'J»k r s x y 

Now multiply both sides of (8.2) by u y and sum over i. It follows that 
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(8.3) {(1 - v)(l - x - y) - (1 - y)w - [(1 - w)(l - y) - x ]uy _ 1 }~ 

o o o o o o o o o o / \ / \ / \ / \ 

E E E I : Ef1;! (\+k)(k;ryr:>v 
i =0 3=0 k=0 r=0 s=0 \ J / \ / V r / \ S / 

k r s-i 
w x y 

We are concerned with that part of the multiple sum that is independent of y. 
The left member of (8.3) is equal to 

(L(l - v)(l - x) - w + u(l - w)] - (1 - v - w)y - (1 - w - x)xy } 

E f(l - v - w)y + (1 - w - x)uy ] 
r=0 [(1 - y)(l - x) - w + u(l - w)] 

r 

r+i 

Expanding the numerator by the binomial theorem, it is clear that the terms 
independent of y contribute 

"o \ 7 [a - v) 
vrH xr r 

v - w) (1 - w - x) u 
r=0 \ V [ ( 1 - v ) ( l - x ) - w + u ( l - w ) ] 2 r + 1 

= {['(1 - v)(l - x ) - w + u (1 - w)]2 - 4u(l - v - w ) ( l - w - x ) } " r 

= {(1 - U - V - W - X + UW + vx)2 - 4uvwx} 2 

We have therefore proved 

k r w x 

= { ( l - u - v - w - x + u w + vx)2 - 4uvwx} 2 . 

We now specialize (8.4) by taking u = w, v = x. Since 

2 
( l - 2u -2w+u 2 +w 2 ) - 4u2w2 = ( l - u - v ) 2 ( l - 2 u - 2 v + u2-2uv + v2) 

= ( i _ U - . v ) 2 [ ( l - u - v ) 2 - 4uv] , 

Eq. (8.4) becomes 
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(8.5) £ H(m,n)umvn = (1 - u - v ) " 1 [ ( l -u -v )2 - 4 u v ] " r 

m,n=0 

where 

If we multiply (8.5) by 1 - u - v and apply (7.1), we get 

(8.7) H(m,n) - H(m - l ,n) - H(m,n - 1) = ( m ^ ** J . 

an identity due to Paul Brock [2], [3]. We remark also that (8.5) implies 

=<-••>-S5( r : j ' ( m "i-"") • 
Also, since 

(1 - u - v ) _ 1 [ ( l - u - v)2 - 4uv] * = J^ \ * | (uv)r(l - u - v) 
r=0 

,4 _ V (2A^A^H „ ^-2r-2 

V |2r \ , ^r v (2r + s + t + 1)! s t 

y m nminp'a) L \ (m + n + 1)1 
= m^O U V r t t . W (2r+D!(m-r)!(n-r).' 

it follows that 

«... BM = hf ; f^B( i ] 
For the generalized version of (8.4), see [4] , [6] , [18, Ch. 4] , 
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9. We shall now briefly discuss some enumerative problems. The 
problem of permutations with a given number of inversions was called to the 
writer1 s attention by H. W. Gould. Let {a i ,a 2 , ' " ja^} denote a permutation 
of { l , 2 , - » - , n } . The pair a . ,a . is called an inversion provided that i < j 
but a. > a.. Thus {l,2,«-» ,n} has no inversions, while ( n , n - 1, ••• , l} 
has n(n - l ) /2 inversions. Let B(n,r) denote the number of permutations of 
{ l , 2, • • • , n} with r inversions. Clearly, 0 < r < n(n - l ) /2 . 

From the definition, it follows that 

r 
(9.1) B(n + l , r ) = £ B ( n , r - s) . 

s=0 
s<n 

This recurrence is obtained when the element n+1 is adjoined to any permu-
tation of { l , 2 , - « * , n } . Now put 

n(n-l)/2 
B(x) = £ B ( n , r ) x r . 

11 r=0 

Then by (9.1), 

n(n+l)/2 ^ r 
Wx ) = E x S B(n,r - s) 

r=0 s=0 
s<n 

n n(n-l)/2 
= £ xS £ B(n,r)xr , 

s=0 r=0 

so that 

(9.2) £n+l ( x ) = ( 1 + x + ' " +xn)/3n(x) 

Since pt(x) = 1, (9.2) yields 

(9.3) * W = ( l - x ) ( l - x 2 ) - . . ( l - x n ) 
(1 - x) 
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Thus, for examplej 

B(n,0) = 1, B(n,l) = n - 1, B(n,2) = -f(n + l)(n - 2) (n > 1), 

B(n,3) = -I- n(n2 - 7) (n > 2) , 

B(n,4) = fa n(n + l)(n2 - n - 14) (n > 3) . 

From (9.3), we get the generating function 

o.4) E /yx)z7(x)n = - 1 - X 

O Xi J.JL X ~" X "~ Z 

where 

(x)n = (1 - x)(l - x2) . . . (1 - x n ) , (x)0 = 1 . 

This is the first occurrence in the present paper of a generating function with 
denominator (x) ; see the remark in Section 11 below. 

If we make use of Euler1 s formula 

n < i - » » > = £ ( - i ) k x'k ( 3 k + 1 ) 
(9.5) 

n=l k= 
2 _L v 5 _t_ -v? -v-12 -y-15 = 1 - x - xr + xb + x( - x1^ - x1D + • . . , 

we obtain an explicit formula for B(n,r) when r < n. For example, we have 

B,n,4, = ( » ; 3 ) - ( n 3 2 ) - (" t ) *>-*• 

B < » . « - ( n ; 4 ) - ( " ; 3 ) - ( " 3 2 ) ^ < » i s > . 
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If we rewrite (9.3) in the form 

0n(x) = (1 + x)(l + x + x2) . . . (1 + x + ••• + x n - 1 ) , 

we obtain the following combinatorial theorem: B(n,r) is equal to the number 
of (integral) solutions x l 9 x 2 , . • • ,x n of the equation 

(9.6) xj + x2 + • • • + x = r 

subject to the conditions 

0 < xfc < k (k = l , 2 , ' " , n ) 

We remark also that (9.3) implies 

n(n-l)/2 
£ B(n,r) = n! , 
r=0 

n(n-l)/2 
£ ( - l ) r B(n , r ) = 0 (n> 1) , 
r=0 

n(n-l)/2 n /.v 
£ r B(n,r) = n! £ ± (Jj = | n ( n - 1) • n! . 

For referencesj see [12, pp. 94-97], 
10. As a second enumerative problem, we consider permutations with a 

given number of r i ses . If {a i ,a 2 , - • • , a n } is a permutation of { l , 2 , e a # , n } , 
a., a.. - is a r ise provided a. < a -. By convention there is always a rise 
preceding aj. For example., the permutation {3,4,1,2} has 3 r ises . 

Let A . denote the number of permutations of { l , 2 , a " ,n} with k 
r ises . Then we have the recurrence 

(10.1) A ^ . = (n - k + 2)A . - + kA . . 
n+l,k n , k - l n,k 

The proof is simple. Let {&i9
9 " 9&r} be a permutation of { l , 2 , - " , n } . If 

a. < a . , - and we place n + 1 between a. and a.,- the number of r ises is I I + I ^ I I + I 
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unchanged. If, however, a. > a.+ 1, the number of r ises is increased by 1; 
3 also true when n + 1 is placed to the 
It is also clear from the definition that 

this is also true when n + 1 is placed to the right of a , 

( 1 0 ' 2 ) A n , l = A n , n = 1 to - 1 . 2 , 3 . - ) ; 

the permutations in question are (n , n - 1 , • • • , l } and { l , 2 , " « , n } , r e -
spectively. By means of (10.1) and (10.2), we can easily compute the first few 
values of A n,k 

1 
1 1 
1 4 1 
1 11 11 1 
1 26 66 26 1 

If, in a given permutation {a1,a2,e • • ,&k}9 we replace a, by n - a, + 1 
(k = 1,2, - • • , n), it follows that 

<10-3> A n , k = A n , n - k + l ' 

Also it is evident that 

(10.4) T A . = n! 
k=l n ' k 

Put 

n , 
A0(x) = 1, A (x) = E A

n k
x (n = 1,2,3,-••) 

k t i n'k 

Then it can be shown that 

(10.5) - l ^ - * - = £ (x - l ) " n A (x)Z
n /n! 

e - x n=0 
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We shall not give the proof of (10.5). It is indeed easier to define A (x) by 
means of (10.5) and show that the other properties follow from this definition. 

For references, see [5] , [18, Ch. 8] . 
The symmetry property (10.3) is not obvious from (10.5). This suggests 

the following change in notation. Put 

(10.6) ACr.s) = A r + s + 1 > r + 1 

Then by (10.3), 

(10.7) A(r,s) = A(s,r) 

Also (10.5) implies, after a little manipulation, 

,10-8) F(x'y, = ; ^ - r ! o A ( - s , T ^ ^ 

Another symmetrical generating function is 

r s x (10.9) (1 + xF(x,y))( l + xF(x,y)) = £ A(r,s) , * / . -
r,s=0 l r + s ; ' 

The denominator in the right members of (10.8) and (10.9) should be noticed. 
11. We conclude with a few remarks about q-series; an instance has 

appeared in (9.4). Simple examples are 

(ii.i) n a - A r 1 = £ zn/(x)n, 
n=0 n=0 

(n.2) n (i + xn
Z) = £ x>n{n-1] zn / (x)n , 

n=0 n=0 

where as above 
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(x)o = 1, (x) = (1 - x)(l - x 2 ) • • • (1 - x n ) 
n 

A more general result that includes both (11.1) and (11.2) is 

°o n °o (a) 
(ii.3) n — - L j j - z 

n=0 1 - x z n=0 x 'n 

where 

(a)0 = 1, (a)n = (1 - a)(l - ax) ••• (1 - ax11 * 

To prove (11.3), put 

.. n *> 
1 - ax z F ( z ) , n i ^ i = 5]• AZ 1 1 , 

n=0 1 - x z n=0 

where A is independent of z. Then 

F(xz) = ̂ ±. F(z) , 

so that 

oo 

This gives 

(1 - az) £ An x n z n = (1 - z) £ A z n 

n=0 n n=0 n 

(1 - xn)A = (1 - ax11"1) A 1 , n n-1 

and (11.3) follows at once. 
k In particular, for a = x 5 (11.3) becomes 
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(11.4) 

GENERATING FUNCTIONS 
k , 

[Nov. 

k-i °° (x ) r i 
Yi ,., n v-1 v^ n n V k + n - 1 n 
II (1 - x z) = 2 ^ T ^ V — z = Z^ n z , 

n=0 n=0 l X 'n n=0 L n -» 

whe re 

( x )
k ^K^ (0 < n < k) 

- k k 
If we take a = x and rep lace z by x z we get 

(11.5) 
k - 1 k 
II (1 - xnz) = £ (-l)n 

n=0 n=0 
Jn(a-l)zn 

Note that when x = 1, r educes to 

It a l so follows from (11.3) that 
( » ) • 

(11.6) 
n r i 

£[3 (a), (b) , a = (ab) , k n -k n 

for a r b i t r a r y a , b . Special izing a , b o r using (11.5), we get 

(11.7) 
k 

roUmsj[sJ 
s 2 -ks+ms [m + n"| 

k J 

which evidently genera l i zes (2.2). 

The function 

e(z) = n (1 - x n z f * 
n=0 

can be thought of a s an analog of the exponential function. This sugges t s the 

definition (compare (4.2) ) , 
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oo oo 

(11.8) e(tz) £ a
n z n / ( x ) n = £ A ( t ) z n / ( x ) , 

n=0 n=0 n n 

where a n is a function of x that is independent of t and z. Using (11.1), we 
get 

(11.9) An(t) = | o [ J ] ak t11"1 

If we define the operator & by means of 

&f(t) = f(t) - f(xt) , 

it follows at once from (11.9) that 

(11.10) AAn(t) = (1 - x11)An_1(t) 

Conversely if a set of polynomials in t satisfy (11.10), then there exists a 
sequence {a } independent of t such that (11.8) holds. 

The special case a = 1 is of particular interest . Put 

00 

e(tz)e(z) = £ Hn(t)zn/(x)n 
n=0 

so that 

For properties of these and related polynomials, see [ 7 j , [ l l j , [ l9J . The 
H (t) a re in some respects analogous to theHermite polynomials. We cite the 
bilinear generating function 
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(11.11) £ Hn(u)Hn(v)z7(x)n = e(z)e(uZ)e(VZ)e(uvz) 
n=0 e(uvz2) 

00 - . n o 
II 1 - x uvz4 

n=0 (1 - x z)(l - x uz)(l - x vz)(l - x uvz) 

which may be compared with (5.7). For proof of (11.11), see [7]. 
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