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Let n(a,b) and N(a,b) be the number of divisions needed in finding the 
greatest common divisor of positive integers a,b using the Euclidean algo-
rithm and the least absolute value algorithm, respectively. In addition to 
showing some properties of periodicity of n(a,b) and N(a,b), the paper gives 
a proof of the following theorems: 

Theorem 1. If n(a,b) = k > 1, then a +b > f, „ and the pair (a,b) 
with smallest sum such that n(a,b) = k is the pair (f, 1 , fk+2)» where it = 
1, f2 = 1 and f _,Q = f ^ + f , n = 1, 2, 3, • • • . 

* n+2 n+1 n 
Theorem 2. If N(a,b) = k > 1, then a + b > x, - and the pair (a,b) 

with smallest sum such that N(a,b) = k is the pair (x, , x, + x
k i )> where 

xj = 1, x2 = 2 and x, = 2x. - + x. 2 , k = 3,4,-•• . These results may 
be compared with other results found in [ l ] , [2], 

Since n(a,b) = n(b,a), we can assume a < b. To prove the first theo-
rem, let n(a,b) = k and assume the k steps in finding (a,b) are 

b = qi a + rj 
a = q2 rt + r2 

r k - 3 q k - l r k -2 + r k - l 
r k-2 = qk r k - l 

If k = 1, then rA = 0 so b = qAa and the smallest pair (a,b) is (1,1) so 

a = flf b = f2, a + b = f3 = 2 . 

Note this case is not included in the theorem. In case k > 1, it is evident 
that the smallest values of a,b will be obtained for r, 1 = 1 and all the qfs 
= 1 except q, , which cannot be 1 but is 2. Thus the pairs (r, - >rb-_o)>''' » 
(a,b) a re (1,2), • • • , tfk+1»^+2*)- Since 
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a + b = fk+l + fk+2 = fk+3 ' 

the theorem is proved. 
We have 
Corollary 1. If a + b < f.+3, then n(a,b) < k for k > 1. 
For b = a + i, i a fixed positive integer so that b < 2a, the quantities 

satisfy 

(1) n(a + mi, a + [m + l]i) = n(a, a + i), m = 0, 1, 2, ••• . 

This follows from the remark that if n(a,b) = k, then 

n(a + b , 2a + b) = k + 1, k = 1, 2, 3, ••• . 

This is evident since the first division would be (2a + b) = l(a + b) + a and 
n(a,a + b) = n(a,b) = k. Equation (1) is a consequence since each n isi one 
more than n(i, a + mi) = n(i,a). The periodicity is evident in the table of 
values of n(a,b) for a < b < 2a. 

a = 1 1 

2 12 

3 12 3 

4 12 2 3 

5 12 3 4 3 

6 12 2 2 3 3 

7 1 2 3 3 4 4 3 

8 1 2 2 4 2 5 3 3 

9 1 2 3 2 3 4 3 4 3 

10 1 2 2 3 3 2 4 4 3 3 

11 1 2 3 4 4 3 4 5 5 4 3 

12 1 2 2 2 2 4 2 5 3 3 3 3 

13 1 2 3 3 3 5 3 4 6 4 4 4 3 

14 12 2 4 3 4 3 2 4 5 4 5 3 3 

15 1 2 3 2 4 2 3 3 4 4 3 5 3 4 3 
Fig. 1 n(a,b) for b = a, a + 1, • • • , 2a - 1 
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To prove Theorem 2, assume the steps in finding (a,b) with n(a,b) = k 

are 

b = qja ± rj 
a = q2r! ± r2 

r k -3 q k - l r k - 2 ± r k - l 
r k -2 = qk r k - l 

where 

0 < r i < 7 a> 0 < r2< 4 r l 9 • • • , 0 < r f e - 1 < f r, k-2 " 

Because of the restriction on the remainders, we must have q2,q3,« • • »q. 
equal to or greater than 2. But since 

2r i + r . + 1 < 3 r . - r . + 1 , i = V . k - 1 , 

in each case, we obtain the smallest sum a + b with q2 = • • • = q, = 2 and 
with qt = 1. For k = 1, we have 1 = 1 » 1 so a = b = 1. Set x. = r. -. 
For k > 1, 

a = x k = 2 x k - l + Xk-2 a n d b = xkn-l = x k + x k - l 

Then 

a + b = 2xk + x k - 1 = x k + 1 

This completes the proof of the theorem. 
Corollary 2, If a + b < x. x , then N(a,b) < k for k > 1. 
Figure 2 exhibits the periodicity (for i fixed): 

(2) N(a,a + i) = N(a + mi, a + [m + l ] i ) , 1 < i < a/2 , 

and the symmetry: 
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(3) N(a ,a + i) = N(a ,2a - i), 1 < i < a - 1 . 

a = 1 1 
2 2 

3 2 2 

4 2 2 2 

5 2 3 3 2 

6 2 2 2 2 2 

7 2 3 3 3 3 2 

8 2 2 3 2 3 2 2 

9 2 3 2 3 3 2 3 2 

10 2 2 3 3 2 3 3 2 2 

11 2 3 3 3 3 3 3 3 3 2 

12 2 2 2 2 4 2 4 2 2 2 2 

13 2 3 3 3 4 3 3 4 3 3 3 2 

14 2 2 3 3 3 3 2 3 3 3 3 2 2 

15 2 3 2 3 2 3 3 3 3 2 3 2 3 2 

16 2 2 3 2 3 2 4 2 4 2 3 2 3 2 2 

17 2 3 3 3 4 3 4 3 3 4 3 4 3 3 2 2 

18 2 2 2 3 4 2 4 2 2 2 4 2 4 3 2 2 2 

19 2 3 3 3 3 3 4 4 3 3 4 4 3 3 3 3 3 2 

20 2 2 3 2 2 3 3 3 4 2 4 3 3 3 2 2 3 2 2 

21 2 3 2 3 3 3 2 4 3 3 3 3 4 2 3 3 3 2 3 2 

22 2 2 3 3 4 2 3 3 4 3 2 3 4 3 3 2 4 3 3 2 2 

23 2 3 3 3 4 3 4 3 4 4 3 3 4 4 3 4 3 4 3 3 3 2 

Fig. 2 N(a,b) for b = a + 1, • • • , 2a - 1 

I wish to acknowledge the a s s i s t a n c e of P r o f e s s o r V. C. H a r r i s in 

shor tening the proofs . 
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