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H-162 Proposed by David A. Klarner, University of Alberta, Edmonton Alberta, 
Canada. 

that 
Suppose a . .> 1 for i , j = 1,2,- show there exists an x > 1 such 

(-1)1 

Hi ~ x a i 2 
l2 i a22 - x* 

n l n2 

In 
l2n 

a - x nn 

< 0 

for all n. 

H-163 Proposed by H. H. Ferns, Victoria, B. C, Canada. 

Prove the following identities: 

,2k-2T 
£ 2 LkFk+3 = 2 " " F - - 1 

k=l 
. 2n^2 

"n+1 

2. ,2k-2 . 2 n T 2 5 £ 2 F k L ^ Q = 2 - L ^ - 1 , 
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where F and L a r e the n F i b o n a c c i and n L u c a s n u m b e r s , n n 
respect ive ly . 

H-164 Proposed by Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan. 

Genera l ize H-127 and find a r e c u r r e n c e re la t ion for the product C = 

A (x)B (y), where A and B satisfy the genera l s e c o n d - o r d e r r e c u r r e n c e 

equations: 

(1) A
n + l ( x ) = R < x ) A

n
( x ) + s ( x > A

n _ l ( x ) 

(2) B
n + i ( y ) = p < y ) B

n
( y ) + Q(y)B

n_i(y> > 

n > 1 and A Q J A ^ B O J B I a r b i t r a r y . 

H-165 Proposed by H. H. Ferns, Victoria, B. C, Canada. 

P r o v e the identi ty 

s(")*rfeK * t 2) , 
k-2 

where F . denotes the i Fibonacci number . 
l 

SOLUTIONS 

A BASIS OF FACT? 

H-132 Proposed by J. L. Brown, Jr., Ordnance Research Laboratory, State College, 
Pennsylvania. 

Let 

Fi = 1, F 2 = 1, F ^ = F ,- + F for n > 0 1 ' L n+2 n+1 n 

define the Fibonacci sequence. Show that the Fibonacci sequence is not a b a s i s 

of o r d e r k for any posi t ive in teger k; that i s , show that not eve ry posi t ive 

in teger can be r ep re sen t ed a s a sum of k Fibonacci n u m b e r s , where r e p e t i -

t ions a r e allowed and k i s a fixed posit ive in teger . 
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Solution by the Proposer. 

Assume { F } is a basis of order k, where k is some fixed positive 
integer. Then, in particular, forgiven n > 0, any positive integer r < F 
would have a representation in the form 

( 1 ) r = % F n . 
1=1 1 

where nA < n2 < • • • < n, and n. < n. But the maximum number of distinct 
integers which could be formed by the right-hand side of (1) is clearly <n . 
Thus each of the F integers 1, 2, 3, • ' • , F would have to be expressed 

n kn 

in a form capable of representing at most n distinct integers. Since, by 
choosing n large enough, we can make F > n , a contradiction is obtained 

n k 
for the value of k under consideration. [The inequality F > n follows 
from the fact that F is approximately a / \/5 for large n, where a = 
(1+ N / 5 ) / 2 ] . 

SUM SHINE 

H-133 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Characterize the sequences 

F = u + V u. n n iH. j 
n-2 

3=1 

i n . 

n-2 n-4 i 
F = u + v u. + y\ y, u. 

n n ^ J . i • i J 
3 = 1 J i=l 3=1 J 

n-2 n-4 i n-6 m i 
F = u + y ] u . + y ] y i u . + T\ Y\ T\ ^. 

n n t-L 3 f-L f-* 3 i • i • -, 3 
3=1 J i=l 3=1 J m=l 3=1 3=1 J 

by finding starting values and recurrence relations. Generalize. 
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Solution by D. V. Jaiswal, Holkar Science College, Indore, India. 

We shall first prove the iii part. 

n-2 n-4 i n-6 m i 
F n = un + £ uj + £ 11 «j + E E E u 

J - - 1 J 1=1 ]=1 J m=l i=l j=l J 

n-3 n-5 i n-7 m i 

•'• Vi = Vi+ S ** + E £ u + E £ £ ^ 
n x n -1 j=l 3 i=l j=l J m=l i=l j=l 3 

n-4 n-6 i n-8 m i 

£ u. + £ £ u i + £ £ £ u4 • 
j = l J i=l j=l J m=l i=l j=l J 

n-2 n-2 
3 

Since F - F ., - F 0 = 0, we have n n-1 n-2 

0 = (u - u - - u «) + n n-1 n-2 (V2 - '^ «,) 
n-4 n-6 i \ / n-6 i n-8 m i \ 

£ u - E E u ) + ( E E - - E E E - . 
j = l J i = i j = i J/ \ i = i j=i 3 m=li=l j=l V 

Cancelling out the terms, we get 

n-8 m i 
u = u -, + E £ £ u-
n n-1 ^ " f-' l 

m=l i=l 3=1 J 

(ii) Proceeding as above, we shall get 

n-6 i 
u =u -, + £ £ u. 

n n-1 f-i f-* i 
i=l 3=1 J 

(i) Proceeding as above we shall get 

n-4 
u = u i + E :u. 
n n-1 f-' i 

3=1 J 
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General izat ion. If 

515 

n-2 n - 4 i 
F = u + Z u. + E Z u. 

M 3 

n - 2 r s 

i= l j= l 3 

^ Z I S - E I ; ^ 
s = l q=l p=l i= l j= l 

(r summations) 

then proceeding a s above, we shall get 

n -2^ -2 s q i 
u n = Vi+ L LL ••• hd.*] 

s = l q=l p=l i = l j= l J 

Edi tor ia l Note: P r o f e s s o r Hoggatt obtained the solut ions: 

i) 

ii) 

u = u(n; 2,2) 
n ' ' u n = u(n; 3,3) 

iii) u =u(n ; 4 ,4) where u(n;~p,q) r e p r e s e n t s the genera l ized Fibonacci 

number . 

See V. C. H a r r i s and C. C. S ty les , MA General iza t ion of Fibonacci N u m b e r s , " 

The Fibonacci Qua r t e r l y , Vol. 2 , No. 4 , pp. 277-289. 

CIRCLE TO THE RIGHT 

H-134 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Evaluate the c i rcu lan t s 

n+k 
F F 

n+(m- l )k n 

n+k n+2k 

n+(m-l)k 
n+(m-2)k 

n 

9 

Jn-hk 

n+(m- l )k n 

J n+(m- l )k 
Jn+(m-2)k 

n+1 L. h+2k 

Solution by the Proposer. 

We reca l l that 
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a - a~ m - 1 0 

a l a 2 

Hence if we put 

Am(D = 

VL) 

we have 

m - 1 
m - 2 

m - 1 m - 1 0 . / 
T-% , , r s , 27ri/mv 

= II £ a q Q (Q = e ) r=0 s=0 

n+k 
F n + ( m - l ) k F n 

n+2k n+2k 

""n+k 

n+(m- l )k n 

n+(m-l )k 

•n+(m-2)k 

J n+(m- l )k 
Jn+(m-2)k 

Jn+k Jn+2k 

m - 1 m - 1 m - 1 m - 1 

Am<*) = F T E Fn+SkUrS • *m(L) " T~T £ W U 
r=0 s=0 r=0 s=0 

r s 

P u t 

Then 

1 + N/5 R 1 a = , p = — N/5 
a - p ' n ^ 

m - 1 

s=0 

m - 1 

s=0 
mk 

a - p 
1 - ^ k I n 1 - a ji 

I i r k ~ ^ " r 0 k \ 1 - w or 1 - U j 8 

a
ng - amk)d - u y > - A i - ^ m - u

rak) 
{a - 0 ( 1 - orar)(l - ur/S) 

a1 1- ) 3 n - ( a n + m k - t?+mk) - U
r f e n

i ^ - a ' £ / 3 Q - a n - t m k ^ + /3a- t m k
Q^) 

(a - 0)(1 - u r a ) ( l - ur/S) 

F n " F n + m k " ( " 1 } " ^ n - k " FnH-(m-l)k ) 

(1 - u r a k ) ( l - o 1 " ^ ) 
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so that 

m - l m - 1 m-1 _ , ,k r , , n V F u r s = 1—T n n+mk l L> " l n - k n+(m-l)k' 
^-* n+sk I I . r k W l rJcv 

r=0 s=0 r=0 (1 - u a )<1 - u /T) 

<Fn " F n + m k > m " ^ V k " r n + ( m - l ) k > m 

(1 - amk)(l - ̂ k ) 

Therefore 

M A m ( F n - W m - ^ " X - k - F n + ( m - l ) k ) m 

( > A m ( F ) = 1 + ( -D«* - L k 

Similarly, 

m-1 m-1 

E T r s \ ^ / n+sk , Jti+skv r s 
Ln+skQ = L {a + P ) u 

s=0 s=0 

..-^e^i-^ _n 1 - a 
1 - u"V r_k "• " : ^FJE 

<*n + ̂  - gn+mk - ^ + m k - / ( ^ i ^ - ^ ^ A ) 
(1 - c/c*)(l - Qr/3) 

L - L L , - (-l)kwr(L , - L _,_, -v. ) n n+mk n-k n+(m-l)k 
(1 - u r a k ) ( l - u V ) 

It follows that 

(L - L A . ) m - (-D^L . -L u ^ . f (• ) A (L) n n+mk n-k n+tm-ljk7 

Also solved by D. Jaiswal (India). 
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THE GREATEST INTEGER! 

H-135 Proposed by James E. Desmond, Florida State University, Tallahassee, Florida. 

PART I 

Show that 

= E(J-/)2 J-j + i = >;r~ri2j"2 d(-Dd 

d=0 

where j > 0 and [ j / 2 ] i s the g r e a t e s t in teger not exceeding j / 2 . 

PART II 

Show that 

F _ *. x • M - d \ T j - 2 d , ^ ( n + D d 

d=0 

= F V(J - d Vj - 2 d ( - l ) ( n n L-J \ d / n 

where j > 0 and [ j / 2 ] i s the g r e a t e s t in teger not exceeding j / 2 . 

Solution by the Proposer. 
PART I 

We have (see fTA General izat ion of the Connection between the Fibonacci 

Sequence and P a s c a l ' s Tr iangle , f T by Joseph A. Raab , this q u a r t e r l y , Vol. 1, 

No. 3 , October 1963, pp. 25-26) that 

:A 
E(V)2)- 2d, - ,d 

(-1) = x 
d=0 

and x. l 0 = 2 x . . . - x. for al l j > 0. Le t S be the se t of a l l i n t ege r s (j + 1) 
> 0 for which the theo rem i s t r u e , 1 = x0 and 2 = x l 9 so 1 and 2 a r e in 
S. Suppose q and q + 1 a r e in S, so that q = x - and q + 1 = x . Then 



1 9 6 9 1 ADVANCED PROBLEMS AND SOLUTIONS 519 

Vl = 2xq " V l = 2(Q + 1} " q = Q + 2 • 

Thus q + 2 is in the set S and the proof is complete by mathematical 
induction. 

PART II 

The same reference as given in Part I yields the result that 

d=0 

and 

x. l 0 = L x. t1 + (-1) x. j+2 n j+1 j 

for all j > 0. Let S be the set of all integers (j + 1) > 0 for which the 
theorem is true. F = F x0 and F 0 = F L = F xl9 so 1 and 2 are in n n u 2n n n n * 
S. Suppose q and q + 1 are in S, so that F = F x . and F , ,-v = ^ ^ ^ ' qn n q-1 (q+l)n 
F x . Then n q 

F x ^ = F L x + F (- l)n + 1x n = L F , _,, + ( - l ) n + 1F = F , ^ n q+1 n n q n q-1 n (q+ln ' qn (q+2)n 

by a known identity (see "Some Fibonacci Results Using Fibonacci-Type 
Sequences," by I. Dale Ruggles, this quarterly, Vol. 1, No. 2, April, 1963, 
p. 77). Thus q + 2 is in the set S and the proof is complete by mathematical 
induction. 

Also solved by B. King, L. Carlitz, D. Jaiswal (India), and D. Zeitlin. 

SQUEEZE PLAY 

H-136 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California, 
and D. A. Lind, University of Virginia, Charlottesville, Va. 

Let (Hn) be defined by Hi = p, H2 = q, H n + £ = H n + 1 + Hn (n > 1) 
where p and q are non-negative integers. Shv there are integers N and 
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k such that F ,, < H < F • , ,- for all n > N. Does the conclusion hold i n+k n — n+k+1 
p and q are allowed to be non-negative reals instead of integers ? 

Solution by Gerald A. Edgar, Student, University of California, Santa Barbara, 
California. 

In order for the result to be true, we must have p > 0 or q > 0. Let 

a = (1 + N / 5 ) / 2 , b = (1 - N/5)/2 . 

Define f(n) = [ a n + 1/2], for n a positive integer, where [x] is the great-
est integer in x (thus f (n) is the nearest integer to an). We now prove that 
f(f(n)) = f(n) + n. The definition of f gives 

(1) an + {-> f(n) > an - \ 

(2) af(n) + i- > f(f(n)) > af(n) - f . 

But (1) is the same as 

f(n) 1 > > f(n) 1 
T" + 2a">n^lT-2i: ' 

or, since (l/a) = a - 1, 

(a - l)f(n) + (a - l ) /2 > n > (a - l)f(n) - (a - l ) /2 

or 

(3) af(n) + | - f > n + f(n) > af(n) - | + f . 

Equations (2) and (3) give 

| > f(n) + n - f(f(n)) > - | . 

But a/2 < 1, and f(n) + n - f(f(n)) is an integer, so it must be zero, and we 
have 
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(4) f(f(n)) = f(n) + n . 

Because of its recurrence, H must have the form H = ca11 + dbn for 
some constants c and d. Now lb I < 1, so 

lim (aH - H ^ ) = lim (can + 1 + dabn - c a n + 1 - db n + 1 ) n_^>oo n n+1 n ^ ^ 

= lim \T5dbn = 0 
n-^oo 

Thus there is an integer N such that laH - H +-1 < -j for all n > N. In 
particular, |aHN - H N + J < 1, so, since H N + 1 is an integer, 

H N + 1 = [aHN+"H = « V • 

It is now an easy induction to show that 

(5> HN+m = ^ V 

for m = 0, 1, 2, • • 8 , where is the m iterate of f defined by 

f°(x) = x 

f+1(x) = f(Ax)) . 

(Note that in particular, f(F ) = F - for n = 2, 3, 8 e e for the Fibonacci 
numbers.) Since HN is a positive integer, there is an integer k such that 

(6> F N + k < % < F N + k + l ' 

We m a y then obtain by induction (using the fact that f i s s t r i c t ly inc reas ing 

on the positive integers) 

F _,. < H < F _,. ,- , n+k n - n+k+1 

for all n > N. 
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The result does not hold for non-negative reals in general; take 

p = &/\l~59 q = a 2 / ^ ; 

then H > F when n is even and H < F when n is odd. n n n n 

Also solved by J. Desmond, A. Shannon, and M, Yoder. 
• • * • • . 


