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H-162 Proposed by David A. Klarner, University of Alberta, Edmonton Alberta,

Canada.
Suppose aij > 1 for i, j = 1,2,---, show there exists an x > 1 such
that
a4y - X g 1n
a9 8y - X2 oo a,
1" . <0
a °o a o a — Xn
an1 n2 nn
for all n.
H-163 Proposed by H. H. Ferns, Victoria, B. C., Canada.
Prove the following identities:
2 2k-2 2n _2
1. 2 2L F =27 F -1
k=1
L 2k-2 2n . 2
2 5512 Fp L =2 Lo, -1,
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where Fn and Ln are the nt]fl Fibonacci and nth Lucas numbers,
respectively.

H-164 Proposed by Murray S. Klamkin, Ford Motor Company, Dearborn, Michigan.

Generalize H-127 and find a recurrence relation for the product Cn =

An(x)Bn(y), where A][1 and Bn satisfy the general second-order recurrence
equations:

M A6 = REIA () + SWA ()

@) B ;0 = PYB ) + QB ;&)
n >1 and Agy,A4,By,B; arbitrary.

H-165 Proposed by H. H. Ferns, Victoria, B. C., Canada.

Prove the identity

n F, . F_\"
n ki _ k
i=21 <1) P <Fk—2> R

where Fi denotes the ith Fibonacci number.

SOLUTIONS

A BASIS OF FACT?

H-132 Proposed by J. L. Brown, Jr., Ordnance Research Laboratory, State College,
Pennsylvania.

Let

Fy =1, Fp =1, F o =F , +F for n>0

define the Fibonacci sequence. Show that the Fibonacci sequence is not a basis
of order k for any positive integer k; thatis, show that not every positive
integer can be represented as a sum of k Fibonacci numbers, where repeti-

tions are allowed and k is a fixed positive integer.
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Solution by the Proposer.
o0
Assume {Fn}1 is a basis of order k, where k is some fixed positive
integer. Then, in particular, for given n > 0, any positive integer r < Fn

would have a representation in the form

k
(1) r:.ZFn. i

i=1 i

where ny <np < -++ < n and n < n. But the maximum number of distinct
integers which could be formed by the right-hand side of (1) is clearly < nk.
Thus each of the Fn integers 1, 2, 3, **°*, in would have to be expressed
in a form capable of representing at most n~ distinct integers. Since, by
choosing n large enough, we can make Fn > nk, a contradiction is obtained
for the value of k under consideration. [ The inequality Fn > nk follows
from the fact that F[1 is appraximately an/ A6 for large n, where a =

(1+ N5)/2].

SUM SHINE

H-133 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California.

Characterize the sequences

n-2
i Fn = un + u
j=1
n-2 n-4 i
ii. F =u + u, + > u

n-2 n-4 i n-6 m i
iii. Fo=u + 2w+ Sou, + > 3w,
=19 =1 mE1Er = )

by finding starting values and recurrence relations. Generalize.
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Solution by D. V. Jaiswal, Holkar Science College, Indore, India.
We shall first prove the iii part.

n-2 n-4 i n-6 m i
Fo=u + 2, u+2 Yu+ 3 3> Xu
n =1 i=1 =1 m=i=1 4= )

n-4 n-6 i n-8 § i
F =u + u, + u, + u
n-2 -2 S AE|E ) paEE )
Since F_-F -F = 0, we have
n n-1 n-2
n-4
0 = - U1 “n-z) T\ U - ] u]
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Generalization., If

n-2 n-4 Zx
F =u + u, + u, + +
n n j=1 J i=1 j=1 )
n-2r 8 ¢ i
DN RS 3 I
s=1 g=1 p=1 i=1 j=1 J

(r summations)

then proceeding as above, we shall get

n-2r-2 i
B RS T
n n-1 s=1 g=1 p= i=1 = J

Editorial Note: Professor Hoggatt obtained the solutions:

i) u = u(n; 2,2)

ii) u = u(n; 3,3)

515

iii) u, = u(n; 4,4) where u(n; p,q) represents the generalized Fibonacci

number.

See V. C. Harris and C. C. Styles, ""A Generalization of Fibonacci Numbers, "

The Fibonacci Quarterly, Vol. 2, No. 4, pp. 277-289.

CIRCLE TO THE RIGHT

H-134 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Evaluate the circulants

Fn Fn+k Fn+(m—1)k Ln Ln-i-k
Fn+(m--1)k Fn T Fn+(m—2)k s Ln+(m—1)k Ln
F ok Foaae 777 Fp Lo Lok ©°

Solution by the Proposer.

We recall that

- L

Ln+(m— 1k
n+(m-2)k
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of I TR S | mol mo1
fn1 %0 "7 Zmea| = o > aswrs (0 = e27r1/m) )
r=0 s=0
a1 % "t 7y '
Hence if we put
Fn Fn+k Fn+(m-1)k
Am(F) = Fn+(m—1)k Fn Fn+(m—2)k ,
vk Flaok 00 Ty
Ly Lok 7" Tnrm-nk
Am(L) = I"n+(m—1)k Ln Ln+(m-2)k s
Lo oo 00 Iy
we have
m-1 m-1 m-1m-1
- rs _ rs
Am(F) B | IZ Fn+skw ’ Am(L) B I I Z Lhesk®
=0 s=0 r=0 =0
Put
1+ A5 1- A5 o - n
=Ty BT Fn=T——§ﬁ’ Ln=a+ﬁn'
Then
m-1 m-1
A\ rs _ 1 n+sk +sk, rs
L Fn+skw T a - B E(a/ —Bn yo
s=0 s=0
1 fn1- ™K Bnl—ﬂmk
“a-p)¢ r kK T K
1-wa 1-wp

{
_ P - o™a - W) - a - £ - oK)
@ - pa - oo - w'p

_ Mo Bn _ (an+mk_ Bn+mk) _ b’r(o(n ﬁ’k -ak Bn_an+mk ﬁk + /5'“+mkak)
@ - pa - wroz) a - wrﬁ)

k r
Fp - Fn+mk - (D% (Fn—k - Fn+(m—1)k')

- mrak)(l - wrﬁk)
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so that
m-1 m-1 m-1 k r
'I—‘I' Z F WIS - 'I_'l' Fo o~ Frimk - 1) (Fn—k B Fn+(m-1)k)
n+sk 1 T l«:)(1 rﬁk)
r=0 s=0 r= - wa -
m mk m
= (Fn - Fn+mk) - (1) (Fn—k - Fn+(m—1)k)
a - o™a - g5
Therefore
m mk m
®) A_(F) = (Fn - Fn+mk) - (1) (Fn—k - Fn+(m-1)k)
m 1+ (_Dmk L
~ Tmk
Similarly,
m-1 m-1
Z Ln+skwrs _ Z (an+sk + ﬁn+sk)wrs
s=0 =0
=an1—amk +Bn1_Bmk
1 - ofd® 1- o5

oM ‘gn _ ozn+mk _ Bn+mk _ ur(anﬁk+ﬁnak—an+mkﬂk— ﬁn+ma)
1 - oo - w'p

k r
= Ln - I"n+mk - (D7 (Ln—k - Ln+(m-1)k)
1 - ')A - «TE%)
It follows that
m mk m
(Ln B Ln+mk) - (1) (Ln—k " Ln+(m—1)k)_

(%) A m(L) =

1+ (1)K Lok

Also solved by D. Jaiswal (India).
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THE GREATEST INTEGER!

H-135 Proposed by James E. Desmond, Florida State University, Tallahassee, Florida.
PART 1
i
2
j+r1=3 (J 2 d) 2i~2d(_p)d ,

d=0

Show that

where j > 0 and [j/2] is the greatest integer not exceeding j/2.
PART II

i
[72-] j - d),j-2d (n+1)d
- j-d)pi- n+
F(j+1)n = Fy ( d )Ln 1) ?
d=0

Show that

where j > 0 and [j/2] is the greatest integer not exceeding j/2.

Solution by the Proposer.
PART I

We have (see ""A Generalization of the Connection between the Fibonacci
Sequence and Pascal's Triangle,' by Joseph A. Raab, this quarterly, Vol. 1,
No. 3, October 1963, pp. 25-26) that

B
%(j p d)zj-Zd(_l)d - x

d=0

and xj+2 = 2Xj+1 - xj forall j > 0. Let S be the set of all integers (j + 1)
> 0 for which the theorem is true, 1 = xy and 2 = x4, so 1 and 2 are in

S. Suppose q and q+1 arein S, so that q = xq_1 and q+1 = xq. Then
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xq+1=2xq—xq_1=2(q+1)-q=q+2.

Thus q + 2 is in the set S and the proof is complete by mathematical

induction.

PART I

The same reference as given in Part I yields the result that

j - d),j-2d, . (o+1)d _
Z( a >Ln (-1) —xj

and

_ n+1
Xip = Lan+1 + (<17 7x,

for all j > 0. Let S be the set of all integers (j +1) > 0 for which the

theorem is true. F_=F x5 and F, =F L =TF x;, so 1 and 2 are in
n n nn n

2n
S. Suppose q and q+1 are in S, so that Fqn = anq—l and F(q+1)n =
F x . Then
hq
_ n+l _ n+l -
anq a1 = FnLan + Fn(—l) Xq-l = LnF (q+1n + (-1) Fqn F (@+2)n

by a known identity (see 'Some Fibonacci Results Using Fibonacci-Type
Sequences, " by I. Dale Ruggles, this quarterly, Vol. 1, No. 2, April, 1963,
p. 77). Thus q + 2 is in the set S and the proof is complete by mathematical

induction.

Also solved by B. King, L. Carlitz, D. Jaiswal (India), and D. Zeitlin.

SQUEEZE PLAY

H-136 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California,
and D. A. Lind, University of Virginia, Charlottesville, Va.

Let {Hn} be defined by Hy =p, Hy=q, H _,=H , +H (@>1)

where p and g are non-negative integers. Sh. there are integers N and
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k such that ¥ , <H <F. ., . forall n>N. Does the conclusionhold if

p and g are allowed to be non-negative reals instead of integers?

Solution by Gerald A. Edgar, Student, University of California, Santa Barbara,
California.

In order for the result to be true, we must have p > 0 or q > 0. Let

a =@+ n~N5)/2, b=(@0-nA5)/2.
Define f(n) = [an +1/2], for n a positive integer, where [x] is the great-
est integer in x (thus f(n) is the nearest integer to an). We now prove that

f(f(n)) = f(n) + n. The definition of f gives

(1) an +%Z f@) > an - -;.-

@) afm) + L >f(@) > af( -

But (1) is the same as

or, since (1/a) =a -1,
@ - Dfm) + @-1/2>n2> @ - i) - @ - 1)/2

or

3) afm) + 5 - 4> n + ) > af) -

Do o
+
o

Equations (2) and (3) give

3> @) +n - £E@) > - 5 .

But a/2 < 1, and f(n) +n - £(f(n)) is an integer, so it must be zero, and we
have
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“) ff) = f(n) + n.

. n
Because of its recurrence, I—In must have the form HI1 = ca + dbn for

some constants ¢ and d. Now |b| <1, so

n+1 n+1 )

lim (cam'1 + dab” - ca - db

Mg, 6H, - Hg) = lim

. n _
nllgxoo'\/gdb = 0

. : 1
Thus there is an integer N such that |aH -H | <4 forall n2> N. In

. _ i . s .
particular, aHN HN +1| < 3+ S0, since HN 41 is an integer,

It is now an easy induction to show that

(5) Hy, = £ (H)

N-+m
_ s P th -
for m =0, 1, 2, s Where is the m™ iterate of f defined by

'x) = x

e = 16" ®) .

(Note that in particular, f(Fn) = Fn+1 for n = 2, 3, *** for the Fibonacci

numbers.) Since HN is a positive integer, there is an integer k such that

<H <K F

(©) F N 2 N+

N-+k

We may then obtain by induction (using the fact that f is strictly inereasing

on the positive integers)

forall n > N.
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The result does not hold for non-negative reals in general; take
p = a/N5, q = a¥/VB;
then H > F_ when n isevenand H < F_ when n is odd,
n n n n

Also solved by J. Desmond, A. Shannon, and M. Yoder.

* Ak ok
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