SUMS OF POWERS OF FIBONACCI AND LUCAS NUMBERS

L. CARLITZ

Duke University, Durham, North Carolina

J. A. H. HUNTER Toronto, Ontario, Canada

1. Hunter has stated as a problem in this Quarterly [2] the identity

(1)
$$F_{n-1}^4 + F_n^4 + F_{n+1}^4 = 2[2F_n^2 + (-1)^n]^2.$$

This can be proved rapidly in the following way. In the identity

(2)
$$x^4 + y^4 + (x + y)^4 = 2(x^2 + xy + y^2)^2$$
,

take $x = F_{n-1}$, $y = F_n$. Then

$$F_{n-1}^4 + F_n^4 + F_{n+1}^4 = 2(F_{n-1}^2 + F_{n-1}F_n + F_n^2)^2$$
.

Since

$$F_{n-1}^2 + F_{n-1}F_n + F_n^2 = F_{n-1}F_{n+1} + F_n^2 = 2F_n^2 + (-1)^n$$
,

we immediately get (1).

Similarly if we take $x = L_{n-1}$, $y = L_n$ in (2), then since

$$L_{n-1}^2 + L_{n-1}L_n + L_n^2 = L_{n-1}L_{n+1} + L_n^2 = 2L_n^2 - 5(-1)^n$$
,

we get the companion formula

(3)
$$L_{n-1}^4 + L_n^4 + L_{n+1}^4 = 2[2L_n^2 - 5(-1)^n]^2.$$

In the same way the identities

^{*}Supported in part by NSF grant GP-5174.

$$(x + y)^5 - x^5 - y^5 = 5xy(x + y)(x^2 + xy + y^2),$$

 $(x + y)^7 - x^7 - y^7 = 7xy(x + y)(x^2 + xy + y^2)^2,$

lead to the following:

(4)
$$F_{n+1}^5 - F_n^5 - F_{n-1}^5 = 5F_{n+1}F_nF_{n-1}(2F_n^2 + (-1)^n)$$
,

(5)
$$L_{n+1}^5 - L_n^5 - L_{n-1}^5 = 5L_{n+1}L_nL_{n-1}(2L_n^2 - 5(-1)^n),$$

(6)
$$F_{n+1}^7 - F_n^7 - F_{n-1}^7 = 7F_{n+1}F_nF_{n-1}(2F_n^2 + (-1)^n)^2$$
,

(7)
$$L_{n+1}^{7} - L_{n}^{7} - L_{n-1}^{7} = 7L_{n+1}L_{n}L_{n-1}(2L_{n}^{2} - 5(-1)^{n})^{2}.$$

Cauchy has proved (see [1, p. 31]) that if p is a prime 3 then

(8)
$$(x + y)^p - x^p - y^p = pxy(x + y)(x^2 + xy + y^2)f_p(x,y)$$
,

where $f_p(x,y)$ is a polynomial with integral coefficients. For $p \equiv 1 \pmod{6}$ there is the stronger result:

(9)
$$(x + y)^p - x^p - y^p = pxy(x + y)(x^2 + xy + y^2)^2 g_p(x,y)$$
,

where $g_p(x,y)$ is a polynomial with integral coefficients. Substituting $x=F_{n-1}$, $y=F_n$, we get

$$\mathbf{F}_{n+1}^{p} - \mathbf{F}_{n}^{p} - \mathbf{F}_{n-1}^{p} = \mathbf{pF}_{n+1}\mathbf{F}_{n}\mathbf{F}_{n-1}(2\mathbf{F}_{n}^{2} + (-1)^{n})\mathbf{F}_{n,p},$$

$$L_{n+1}^p - L_n^p - L_{n-1}^p = pL_{n+1}L_nL_{n-1}(2L_n^2 - 5(-1)^n)L_{n,p}$$

where $F_{n,p}$ and $L_{n,p}$ are integers. If $p \equiv 1 \pmod{6}$ we get

$$F_{n+1}^{p} - F_{n}^{p} - F_{n-1}^{p} = pF_{n+1}F_{n}F_{n-1}(2F_{n}^{2} + (-1)^{n})^{2}F_{n,p}^{!},$$

$$L_{n+1}^{p} - L_{n}^{p} - L_{n-1}^{p} = pL_{n+1}L_{n}L_{n-1}(2L_{n}^{2} - 5(-1)^{n})^{2}L_{n,p}^{i}$$
,

where $F'_{n,p}$ and $L'_{n,p}$ are integers.

2. To get more explicit results, we proceed as follows. Consider the identity

$$(10) \quad \frac{x}{1-xw} + \frac{y}{1-yw} + \frac{z}{1-zw} = \frac{(x+y+z)-2(xy+xa+yz)w+3xyzw^2}{1-(x+y+z)w+(xy+xz+yz)w^2-xyzw^3}.$$

We take z = -x - y. Then (10) becomes

(11)
$$-\frac{x}{1-xw} - \frac{y}{1-yw} + \frac{x+y}{1+(x+y)w} = \frac{-2Uw+3Vw^2}{1-Uw^2+Vw^3} ,$$

where

(12)
$$U = x^2 + xy + y^2, \quad V = xy(x + y).$$

We have

$$(1 - Uw^{2} + Vw^{3})^{-1} = \sum_{r=0}^{\infty} w^{2r} (U - Vw)^{r}$$

$$= \sum_{r=0}^{\infty} w^{2r} \sum_{s=0}^{r} (-1)^{s} {r \choose s} U^{r-s} V^{s} w^{s}$$

$$= \sum_{k=0}^{\infty} (-1)^{k} w^{k} \sum_{r} {r \choose k-2r} U^{3r-k} V^{k-2r} .$$

Since the left member of (11) is equal to

$$\sum_{k=0}^{\infty} \ \left[\left(-1 \right)^k \! \left(x \ + \ y \right)^{k+1} \ - \ x^{k+1} \ - \ y^{k+1} \right] \, w^k \ ,$$

it follows that

470 SUMS OF POWERS OF FIBONACCI AND LUCAS NUMBERS [Dec. $(-1)^k(x + y)^{k+1} - x^{k+1} - y^{k+1}$

$$= (-1)^{k} 2 \sum_{r} \begin{pmatrix} r \\ k - 2r - 1 \end{pmatrix} U^{3r-k+2} V^{k-2r-1}$$

+
$$(-1)^k 3 \sum_{r} \binom{r}{k-2r-2} U^{3r-k+2} V^{k-2r-1}$$
.

Since

$$2\begin{pmatrix} \mathbf{r} \\ \mathbf{k} - 2\mathbf{r} - 1 \end{pmatrix} + 3\begin{pmatrix} \mathbf{r} \\ \mathbf{k} - 2\mathbf{r} - 2 \end{pmatrix} = \frac{\mathbf{k} + 1}{\mathbf{k} - 2\mathbf{r} - 1}\begin{pmatrix} \mathbf{r} \\ \mathbf{k} - 2\mathbf{r} - 2 \end{pmatrix} ,$$

we have

$$(x + y)^{k+1} - (-1)^k (x^{k+1} + y^{k+1})$$

(13)
$$= \sum_{\mathbf{r}} \frac{\mathbf{k}+1}{\mathbf{k}-2\mathbf{r}-1} \begin{pmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{k}-2\mathbf{r}-2 \end{pmatrix} \mathbf{U}^{3\mathbf{r}-\mathbf{k}+2} \mathbf{V}^{\mathbf{k}-2\mathbf{r}-1}.$$

When k is odd, it is to be understood that for r = (k - 1)/2, the coefficient on the right is 2.

Replacing k by 2k in (13), we get

$$(x + y)^{2k+1} - x^{2k+1} - y^{2k+1}$$

$$= \sum_{r} \frac{2k + 1}{2k - 2r - 1} \binom{r}{2k - 2r - 2} U^{3r-2k+2} V^{2k-2r-1};$$

the range of r is determined by

(15)
$$r < k, 2k - 2 < 3r.$$

In particular (14) implies

$$(x + y)^{6k+1} - x^{6k+1} - y^{6k+1}$$

$$= \sum_{r=0}^{k-1} \frac{6k+1}{2r+1} {3k-r-1 \choose 2r} U^{3k-3r-1} V^{2r+1}.$$

For example, we have

$$(x + y)^7 - x^7 - y^7 = 7 U^2V$$

 $(x + y)^{13} - x^{13} - y^{13} = 13 U^2V(U^3 + 2V^2)$
 $(x + y)^{19} - x^{19} - y^{19} = 19U^2V(U^6 + 7U^3V^2 + 3V^4)$.

We also have from (14)

(17)
$$(x + y)^{6k+5} - x^{6k+5} - y^{6k+5}$$

$$= \sum_{r=0}^{k} \frac{6k+5}{2r+1} {3k-r+1 \choose 2r} U^{3k-3r+1} V^{2r+1}.$$

For example,

$$(x + y)^5 - x^5 - y^5 = 5UV$$

 $(x + y)^{11} - x^{11} - y^{11} = 11 UV(U^3 + V^2)$
 $(x + y)^{17} - x^{17} - y^{17} = 17(UV(U^6 + 5U^3V^2 + V^4).$

When 6k+1 is prime, the coefficients on the right of (16) are divisible by 6k+1; moreover the right member has the polynomial factor U^2 . When 6k+5 is prime, the coefficients on the right of (17) are divisible by 6k+5; moreover the right member has the polynomial factor U. Thus (16) and (17) furnish explicit formulas for the factors $f_p(x,y)$ and $g_p(x,y)$ occurring in (8) and (9).

In addition we have the identity

(18)
$$= \sum_{r=0}^{k} \frac{6k+3}{2r+1} \left(\frac{3k-r}{2r} \right) U^{3k-3r} V^{2r+1}.$$

For example

$$(x + y)^9 - x^9 - y^9 = 9U^3V + 3V^3$$

 $(x + y)^{15} - x^{15} - y^{15} = 15U^6V + 50U^3V^3 + 3V^5$.

For even exponents we get

(19)
$$= 2 U^{k} + \sum_{0 \le 3r \le k} \frac{k}{r} {k - r - 1 \choose sr - 1} U^{k-3r} V^{2r} .$$

In particular, (19) yields

(20)
$$(x + y)^{6k} + x^{6k} + y^{6k}$$

$$= 2 U^{3k} + \sum_{r=1}^{k} \frac{3k}{r} \left(\frac{3k - r - 1}{2r - 1} \right) U^{3k - 3r} V^{2r}.$$

The first few coefficients in the right member of (19) are given by the following table.

k	0	1	2	3
1	2			
2	2			
3	2	3		
4	2	8		
5	2	15		
6	2	24	3	
7	2	35	14	
8	2	48	40	
9	2	63	90	3
10	2	80	175	20

REFERENCES

- 1. P. Bachmann, <u>Das Fermatproblem in seiner bisherigen Entwickling</u>, Berlin and Lupzig, 1919.
- 2. Problem H-79, this Quarterly, Vol. 4 (1966), p. 57.

* * * *

[Continued from page 466.]

$$\lim_{n \to \infty} \frac{1}{N} A(N,j,m) = \frac{1}{m} \quad \text{for} \quad j = 0,1,\cdots,n-1.$$

(see [5]).

REFERENCES

- 1. R. L. Duncan, "An Application of Uniform Distributions to the Fibonacci Numbers," The Fibonacci Quarterly, Vol. 5, No. 2, 1967, pp. 137-140.
- 2. A. O. Gel'fond and Yu. V. Linnik, Elementary Methods in the Analytic Theory of Numbers, 1968.
- 3. J. G. van der Corput, "Diophantische Ungleichungen I: Zur Gleichverteilung modulo Eins," Acta Mathematica, 55-56, 1930-31 (378).
- 4. C. L. van den Eynden, "The Uniform Distribution of Sequences," Dissertation, University of Oregon, 1962.
- 5. L. Kuipers and S. Uchiyama, "Notes on the Uniform Distribution of Sequences of Integers," Proc. Japan Ac., Vol. 4, No. 7, 1968 (609).

* * * *