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1. Hunter has stated as a problem in this Quarterly [2] the identity

2
4 4 4 = 2 _1\R
1) FL o T Fp +F o= 202F + (1) .

This can be proved rapidly in the following way. In the identity

(2) x4+y4+(x+y)4=2(x2+xy+y2)2,
take x = Fn—l’ y = Fn' Then
Fpo1+ Fpt Frg = 200 ) + By Fp +FDT
Since
F?l—l * Fn—an * F%l = Fn—1Fn+1 * F?l = ZFE DY,

we immediately get (1).
Similarly if we take x = Ln-l’ y = Ln in (2), then since

2 2 = 2 _ B
+Ln_1Ln+Ln L Ln+1+Ln 2Ln 5(-1)" ,

2
Ln— n-1

1

we get the companion formula

2
4 4 4 - 2 _ s 1)\
(3) Lé |+ Lo +Le . = 2[2Ln 5(-1)"1 .

In the same way the identities
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® +y)5 - x5 - y5 = bxylx + y)&% + xy + y?),

x + y)0 - - y7 Txyx + y)x% + xy + y2)%,

lead to the following:

@) Fé - F - FS = 5F FF @F+ DY),
© by T B - S nE, e - s,
© -, =, e )
() L,-u-xl =7 . LL @ -5 ™',

Cauchy has proved (see [1, p. 31]) that if p isa prime 3 then
(8 &+ 9P - xP - yP = pxyx + P&+ xy + ¥ )fp(x,y) ’

where f (x,y) is a polynomial with integral coefficients. For p = 1 (mod

6) there is the stronger result:
2
9) x+yP - xP - yP = pxyx + Y2 + xy + ¥?) gp(x,y) ,

where gp(x,y) is a polynomial with integral coefficients. Substituting x -

F y = Fn’ we get

n-1’
p p P = 2
Frpapn = Fp - Fpg = PFFF o @F, + 6 ol ¥y n,p’
Lpep = Lh = Tn g = PLy Tl @1 - 5CDYL, n,p’

where F and L are integers. If p = 1 (mod 6) we get
n,p n,p

(2F2 + (-1)° )F'

P _ gP _ gP =
N o F pFn+1nnl n,p’

p _ b _ P - 2 _ P
L L Ln an+1Ln e l(ZL 5(- 1) )L n,p’
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where F! and L! are integers.
n n,p

2. To get more explicit results, we proceed as follows. Consider the
identity

X _,_y ,_z _ &+ty+sz)-2@Ky+xa+yz)w+ 3xyzw?
1-xw 1-yw 1-2zw

(10)
1-&x+y+z)w+ Xy +xz +yz)w? - xyzwd

We take z = -x - y. Then (10) becomes

(11) _ X ¥y X +y - _-20w + 3Vw? ,
IT-xw 1-yw 1+&+yW | yu? 4 vl

where

(12) U=x+xy+y, V=xy&+y.

We have

E wzr(U - VW)r

r=0

1 - Uw? + Vw:")_1

o0 T

2r sfr\,.r-s;,S._s
Zw Z (-1) (s)U VvV w
r=0 s=0

Il

D L > (k _rzr)U3r-ka—2r.

k=0 r
Since the left member of (11) is equal to

[oe]

DD R (R S i) L
k=0 .

it follows that
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(—1)k(x + y)IL<+1 _ Xk+1 _ yk+1

3r-k+2  k-2r-1
—(1)22( Zr—l)U Vk

3r-k+2_ k-2r-1
SR (WA L

Since
r r _ k+1 r
2(k—2r—1) +3(k—2r—2) ~'1<'-2r—‘1(k-.zr-z) ’
we have
+
o+ P o et 4 R
(13)
_ k+1 r 3r-k+2 k-2r-1
= k—Zr—l(k—Zr-Z)U v .
r

When k is odd, it is to be understood that for r = (k - 1)/2, the coefficient

on the right is 2.
Replacing k by 2k in (13), we get

2k+1  2k+1  2k+1
x +y) - X -y

- 2k + 1 r USr—2k+2V2k—2r—1,
ZZk—Zr—l 2k - 2r - 2 ’

the range of r is determined by

(15) r<k, 2-2< 3r.

In particular (14) implies
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R N

(16) k-1
6k +1(3k - r - 1\ _3k-3r-1_2r+1
or + 1 ( 2r )U v
=0

For example, we have

&+ -xT -yl = 70%
13 U2v(U® + 2v?)

&+ yP - x¥ -y = 19UV(US + TURV? + 3VY) .
We also have from (14)

x + y)13 - xB _ y13

I

& + y)6k+5 _ X6k+5 _ y6k+5
/ k
(17 6k + 5 (3k - v + 1);3k-3r+1 2r+1
I 2r .
r=0

For example,

x +y)P® - xb - y® = 50V

&+ ytt - gyt = 11 0V@UE + V?)

I

x + P - x1T - yIT = 170V (Us + 502 + Vi),

When 6k + 1 is prime, the coefficients on the right of (16) are divisible
by 6k +1; moreover the right member has the polynomial factor U%. When
6k + 5 is prime, the coefficients on the right of (17) are divisible by 6k + 5;
moreover the right member has the polynomial factor U. Thus (16) and (17)
furnish explicit formulas for the factors fp(x,y) and gp(x,y) occurring in (8)
and (9).

In addition we have the identity

6k+3 6k+3 6k+3
x +y) - X -y

(18) k

2r + 1 2r

6k + 3( 3k - r>U3k—3rV2r+1.
r=0
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For example

& +y)? -x -y = 9U%V + 3V3
& + y)i5 - x5 - y15 = 1508V + 50U%V3 + 3V°.
For even exponents we get

x + y)Zk + XZk + y2k

(19)
_ 2Uk+ 2 : _1_(_(1{ - r - 1>Uk—3rV2r.
T sr -1

K3k

In particular, (19) yields

x + y)6k + x6k + y6k

(20) k
.3k 3k {3k - v - 1),,3k-3r 2r
=20+ ) -—( 2r_1>U v

The first few coefficients in the right member of (19) are given by the

following table.

'k\r 1 o 1 2 3

1] 2

2 | 2

3 | 2 3

4 | 2 8

5 | 2 15

6 | 2 | 24 3

7 |2 | 35 14

s |2 48 40

9 |2 63 90 3
10 |2 go | 175 |20
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L 20 20 2% 2%
[Continued from page 466. ]
1li —1A(N'm) =41 for j =0,1,oc+,n-1
n—5'w N ) m ) e ’
(see [5]).
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