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1. INTRODUCTION 

A famous unsolved problem in number theory asks the question, "Are 
there infinitely many prime numbers in the Fibonacci sequence?" It is well 
known that if ( u } is the sequence defined by: 

U = U - + U -, U0 = 0, Ui = 1, n n-1 R-2 u » i * 

then U is prime only if n is prime. The converse, however, is not true 
since, for example, Ui9 = 113- 37. Whether there are infinitely many primes 
p such that U is prime, or indeed whether there are infinitely many excep-
tions, has been an elusive problem for over a century. 

In this paper we parametrize the sequence by using the recursion: 

Un(x) = xUn_1(x) + Un_2(x); U0(x) = 0, Ut(x) = 1 . 

(Note that U (1) = U . ) The resulting sequence: 0, 1, x, x2 + 1, x3 + 2x, x4 

+ 3x2 + 1, etc. , satisfies all of the important divisibility relations of the orig-
inal sequence with the following welcome exception: 

Theorem 1. U (x) is irreducible if and only if n is prime, which we 
will prove here. 

The following notation will be used throughout the paper. 

x + y x2 + 4 — _ x - y x2 + 4 
2" • ' W = 

Vn(x) = xVn_1(x) + Vn_2(x); V0(x) = 2, V^x) = x . 

2. SOME PROPERTIES OF THE SEQUENCE 

The following are just a few of the results concerning the sequence which 
may be readily proved. 

457 



458 DIVISIBILITY PROPERTIES OF FIBONACCI POLYNOMIALS [Dec. 
n —n 

(1) U (x) = " " H 
n o - u 

(2) wu = -1 . 

(3) Vn(x) = W
n + o n . 

(4) U (x) | U (x) 
n | nm 

If 

U (x) = 2 ^ A(n,m)xn 

m=0 

then, 

(5) ^ - ^ E V - O U R - : - 1 ) 
1) 

j=m 

U2n+1(x) E (-Dn(2n + 1) (mod (x2 + 4) ) ; 

ii) UQ (x) = (-l)n""1nx(mod (x2 + 4) ) . 

« U a + b ( x ) = U a ( x ) V b ( x ) - ( - 1 ) b u a - b ( x ) 

ii) Ua+b(x) = Ub(x)Va(x) + (-D\_b(x) 

(8) (Ua(x),Ub(x)) = U( a j b ) (x) . 

If p is a prime, 

p-1 
2 

(9) U (x) = (x2 + 4) (mod p) . 
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Equations (1), (2), and (3) are well known, and (4) follows immediately 
from (1). Equation (5) follows from (1) by expanding and comparing coeffi-
cients, while (6) and (7) may be proved by routine calculation using (1), (2), and 
(3). To prove (8), let 

where 

I = (n:f(x) J Un(x)} 

f(x) = (Ua(x), Ub(x)) . 

If r £ l , then by (4) mr E I for any integer m. If r E I and frE I, then 
by (7), r - t E I. Hence I is an ideal containing a and b , and therefore 
(a,b) E I, which shows that 

< U a ( x ) > U b ( x ) ) | U ( a , b ) ( x ) 

and by (4) we have 

U ( a , b ) ( x ) | ( U a ( x ) ' V x ) ) 

The proof of the identity in (9) goes as follows. 
By (5) we have, 

&(p,m) s I )4m(modp) , 

hence 

p-1 
2 / P z A 2 f c i - n i ) E=l 

U (x) E £ ( 2 ] x \ 2 / 4 m = (x2 + 4) 2 (mod p) . 
P m=0 \ m I 
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3. PROOF OF THEOREM 1 
That U (x) is irreducible only if n is prime, follows immediately from 

(8). We now prove that U (x) is always irreducible. 
Suppose that for some odd prime, p, U (x) is reducible. Then we may 

write 

m 
U (x) = 0 f.(x) , 

P i=i 1 

where the f. (x) are all monic irreducibles. 
Case 1. m > 3. Since U (x) contains only even powers of x, U (x) = 

U (-x). Hence for each i there exists a j such that f. (x) = ±f.(-x), and for 
that same j , f. (-x) = +f.(x). Therefore, 

f.(x)f.(x) = (±fj(-x))(±f.(-x)) = f.(-x)f.(-x) . 

Hence if i ^ j , U (x) is divisible by an even polynomial. On the other hand, 
if i = j , f.(x) is even since f.(0) ^ 0. In either instance, we have some 
factorization h(x)g(x) = U (x), where h(x) and g(x) have degree>2 and both 
a re even functions of x. Now by the division algorithm, we may write 

h(x) = ^(x)(x2 + 4) + h , 

and 

g(x) = *2(x)(x2 + 4) + g , 

where h and g are integers. Now by (6), we see that 

h(x)g(x) = ±p(modx2 + 4) , 

hence h = ±p and g = ±1 without loss of generality. On the other hand, by 
(9), we have 

k g(x) = (x2 + 4) (mod p) when p = 3 mod 4 , 
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and 

ki ko 
g(x) E (x + a) x(x - a) 2 (mod p) when p s 1 mod 4, 

where a = 2 \Pl mod p. In the second case, we note that kt = k2 since g(x) 
= g(-x) (mod p). Hence, in either instance, we may write 

g(x) =*3(x)p + (x2 + 4)k , 

where ^3(x) is even since g(x) and (x2 + 4) are . Therefore #3(x) = c (mod 
x2 + 4) for some integer c, and we have 

±1 = g(x) = cp (mod x2 + 4) , 

a contradiction. Hence if U (x) is reducible, it must have only two factors. 
Case 2. m = 2. Let U (x) = f(x)g(x) where f(x) and g(x) a re i r r e -

ducible and monic. Now either f (-x) = f (x) or f (-x) = g(x). (Note: since 
sgnf(O) - sgng(O) ^ 0, f(-x) £ -f(x) or -g(x)). If f(-x) = f(x), the a rgu-
ment in Case 1 is applicable, since f(x) and g(x) are even. Hence we may 
assume f(-x) = g(x). Now if p = 3 (mod 4), we get an immediate contradic-
tion. Since 

deg f (x) = deg g(x) = E-^— , 

which is odd, we have that the leading coefficients of f (-x) and g(x) have op-
posite signs. Therefore p = 1 (mod 4). Now if we let 

p-1 2-1 
2 £zl_n

 2 

f(x) = ^ anx 2 and g(x) = ] > j ( - « \ : 
n=0 n=0 

then we have 

f(x)g(x) = x p _ 1 + (2a2 - a i )x p " 3 + (2a4 - 2a3ai + a | )x p " 5 + 
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Now from (5) we have that (2a2 - a ^ = p - 2 which means aj must be odd 
and consequently a2 is even since 2a2 = 0 (mod 4). But also from (5), we 
have that 

(2a4 - 2 a 3 a i + aS) = (p " 3)
2
(p ~ 4) . 

which is odd; this is a contradiction since a2 is even. Therefore U (x) is 
irreducible. 

4. FURTHER CONSIDERATIONS 

The generating function for ( u (x)} is quite easy to derive, but not very 
illuminating for number theoretic purposes. We include it here for the sake of 
completeness. 

Let 

oo 

f(x,y) = 2 U
n

( x ) y n ' 
n=0 

then 

f(x,y) = £ , 
1 - xy - y2 

by using the recursion relation and the fact that U (x) = (-1) " U_ (x). 
The main theorem of this paper brings to mind the sequence of cyclotomic 

polynomials which are also irreducible for prime numbers. We conclude this 
paper by showing the following inherent connection between the two sequences. 

Theorem. The n - 1 roots of U (x) are given by 

U (2i cos — J = 0 , 

for k = l , 2 , - - - , n - l . 
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Proof. Let x = 21 cos 9, 0 < 9 < IT, then from (1), 

U (2i cos 9) (i cos 9 + sin 9) - (j cos 9 - sin 9) 
2 sind 

(-i) (e - e ) 
2 sin 6 

U (2i cos 9) n 
(i) s in n.9 

sin 6 

which i s ze ro for 

e = ^zr k = i , 2, ••• , n - 1 
n J 9 9 9 

* * * * * 

[Continued from page 456. ] 

m + r 

and the c i r c l e about (1,0) with rad ius \a. I. Now, for a. = a, the two c i r c l e s 

m u s t be tangent external ly (tangent, because 1 - a is rea l ; and ex terna l ly , 

s ince 0 < 1 - a < 1). Now if the re ex i s t s an i such that \a. J < a, then the 

rad i i of both c i r c l e s would be s m a l l e r , and hence they couldnTt i n t e r sec t . This 

shows that a = a. . 
I 

* * * * * 


