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1. INTRODUCTION

For k > 2, the Fibonacci k-sequence F(k) may be defined recursively
by

n-1
£,20 m<0), f=1, £ = 36 @>1.

i=n-k

A generalized Fibonacci k-sequence A(k) may be constructed by arbitrarily

choosing aj, ag, a_l, Tt 8y g and defining

n-1
an=0 n < 2-Kk), a = Z 2, n> 1).

i=n-k

In this paper, some well-known properties of F(2) (see [1] and [8])
are generalized to the sequences A(k). For some properties of F(k), see
[4], [6], and [7]. The sequences A(3) are investigated in [9].

The pedagogical values of introducing Fibonacci sequences in the class-
room are well known. (See, for example [3], pp. 336-367.) It seems pos-
sible thatithe generalizations described in this paper may suggest some areas
of investigation suitable for high school and college students. (See, for exam-
ple [5].) For once a theorem concerning F(2) has been discovered, one may
search for corresponding theorems concerning A(2), ¥(3), A(3), **° and
finally F(k) and A(k). (See [2].)

2. THEOREMS

The first theorem is a '"shift formula'" needed in the proof of Theorem 6,

Theorem 1. For n > 2, a = Zan -k
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Theorem 2 is a generalization of the theorem that any two consecutive
terms of F(2) are relatively prime.
Theorem 2. For n Z 2, every common divisor of

a_,

n’ %p+1’ ZFnt2 T pake1

is a divisor of ay, ag, ***, a8, 1.
Some summation theorems are given in Theorems 3, 4, and 5.
Theorem 3. (a) For n >1and m > 1,

n kn+m
Z Apirm+1 Z a; -
i=0 i=m+1-k
(b) For n > 1,
n kn-1
Zaki = Z 3 -
i=1 i=0

() For n2>1,

1Ki< kn-1
i#OTmod k)
Theorem 4. For n > 2 - Kk,
n k-2 k-2
1 : .
2, = =7 % ~ 1 + ia_; - k -i- 1)an+i .
i=2-k i=1 i=1

Theorem 5. For n > 1,

n
Z al = g - g%y - 210, 4%
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Theorems 6, 7, and 8 show relations between F(k) and A ().
Theorem 6. For n>1 and m >1,

k j
e = 2 (fackes I g
=1 i=1
Theorem 7. Let dm be the greatest common divisor of
fm’ fm—l’ T fm—k+2 :

If m>1, m divides n, and dm divides a then dm divides a.

Theorem 8. Let r be the largest root of the polynomial equation

k-1
xk - < =0
i=0
Then
a k+1 j-1
. ny _ 1 k-i
@ o f_n_) "y )
A j=2 i=1
and
a
() lim ( n+1> =r.
n—so a
n
3. PROOFS OF THEOREMS
Theorem 1 follows directly from the definition of A(k). For, if n > 2,
then

n

n-1
an+1 = z ai = z ai +at][1 T Zan A
i=n-k+1 i=n-k
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To prove Theorem 2, suppose that d is a common divisor of a2,

+1’
. ’an+k—1' Since

n+k~2 n+k-2
k-1 Z R Z a; »
i=n-1 i=n

it follows that d also divides a1 It follows, by induction, that d divides

an—z’...’a

9
For the proof of Theorem 3(a), choose any integer m > 1. Now Theo-
rem 3(a) holds for n = 1 because

1
Z aki+m+1 - am+1 * ak+m+1
i=0

m k+m k+m
- — A
= 2yt 2 - 2. A
i=m+1-k i=m-+1 i=m+1-k

Furthermore, if Theorem 3(a) holds for n = p,

then it holds for n = p +1
because we then have

pt+l

p
2 e Uepst)imal T D s
i=0 i=0

k(p+1)+m kp+m
SN M
i=kp+m+1 i=m+1-k
k(p+1)+m
- Y .

i
i=m+1-k

Hence Theorem 3(@) holds for n >1, m > 1.
In the proof of Theorem 3(b), we apply Theorem 3(a), choosing m = k- 1:
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n kn+k-1
Zaki+k = 2 4
i=0 i=0

Theorem 3(b) follows since the left side of this equation is equal to

n
Yntk F Z Bi »
i=1

and the right side is equal to

kn-1 kn+k-1 kn-1
Zai+ a, = a, *ap g -
i=0 i=kn =0

Theorem (3c) is an immediate consequence of Theorem 3(b).
Inductive proofs of Theorems 4 and 5 are omitted. One may, however,

verify (or discover!) Theorem 4 by considering the following diagram:

" 2k |
-85 - Agy Lo §
: 1
-2, T2 - T8k
89 I \3’2\3.2\ R e, - - 23k
3"k \1\{3\ -_———-—:—a(—)—--—--_'_“.._____a_4'_k__
a4:—k \ ) az B 3-1 B o - a5—k
l’l+2 k \ - an - an—-]_ - oo - an+3—k
n+3 k A+ “ 84| T % - - A4k
. ; R .
\t&z T k-3 T k-4 T 777 T Zpaa|T g
8 4k-2 T pak-3 T 777 T e T a1
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It follows from this diagram that

n n k-2 k-2
Zai=an+k—a1—(k—2)z ai+zia_i—z(k—i—1)an+i.
i=2-k i=2-k i=1 i=1

For the proof of Theorem 6, let n be any integer such that n > 1.
Theorem 6 holds for m = 1 because

k k

i
2 Bnk+ Zfl-jﬂ = Z @etifl) = 2paa

=1 i=1 j=1
If Theorem 6 holds for m = p, then it holds for m = p +1 because we then
have

k j
qptptl) ~ Pri)p Z an+1-k+jz fp-j+i
j i=1

k+1 j

- an—k+j{' for1ogi ~ fp+1}
' =1

k j
- Z an—k+jzfp+1-j+i - an—k+1fp+1
- -1

=1
k+1 k+1
R Z fok+i - Z 2 ieri) fpr1
i=1 =2
k j
= 22 oy vt
j=1 i=1
* fp+1(_an—k+1 T2, )
k j
= D (Pnokey 2 ety
=1 i=1

The last equality is obtained by applying Theorem 1. Hence Theorem 6 holds
for n>1 and m > 1.
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Theorem 7 obviously holds for n = m. We shall prove that if Theorem
7 holds for n = mp, then it holds for n = m{p + 1).
Suppose, therefore, that dm divides amp. By Theorem 6,
k-1 j
= = - LS
am(p+1) amp+m Z amp—k+j Z_,fm—jﬂ * amp j:'m+1 *
=1 i=1
Since dm divides each term of the sum
i
fm—j+i ’
i=1
where 1< j<k-1, and d divides a_ _, it follows that d divides
— —_ m mp m
m p+1)°
For the proof of Theorem 8(a), we once again apply Theorem 6. We

choose n = 1 and divide by £

1+m’
I .
a1+m - Z a i fm—j‘l‘i
fm . 1-ktj < fim
=1 i=1
In [6] it is shown that, for any integer g,
f
lim it ) B .
m=—oo{ f

It follows, therefore, that

k i
a ..
. ny _ ci-j-1
nlgnoo( fn) Z Gl—kﬂ Er

J:1 i=

k+1 j-1
1 k-i
= -r-E aj_k Z r

j=2 i=1

Theorem 8(b) holds since
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. an+1 _ . an+1 fn fn+1
n11_1_’n°o a = plim o\ I "2 T T
n n+1 n n

an an - f+1
= lim — lim — lim —) =r .
n-sow f n = f n—>ow f
n n n
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DON'T FORGET!

It's TIME to renew your subscription to the Fibonacci Quarterly!



