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In this section we consider the generalized Fibonacci and Tribonacci
numbers.

We write the generalized Fibonacci numbers as

o0
-k k) v (1)
-— - 2 = 3
1) 1 - a;x - agx<) E:FV X (FV Fv )
v=0
where
F o=aF ,+&F ,, Fo=1, Fy=a, Fp= aj + a,,

k=1,2,3,++ and n=0,1, 2, ¢~
The generalized Tribonacci numbers we write as
o0
2 _ 3 - (k) v
(2) (1 - ayx - axx asx®) Z TV X,
v=0

where

T = T‘(rl), To=1, Tq=ay, T,=a}+a, F3=aj+2am,+ag,

T, = T k=1,2,3,+ and n=0,1,2,"".

n-1 T Th g * AT o

Note: Throughout this secticn we consider a;, a,, and az, as rational inte-

gers only.
199
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CONVOLUTED SUM FORMULAS
FOR THE GENERALIZED FIBONACCI AND TRIBONACCI NUMBERS

By elementary means, it is easy to prove, if

oo
(3) @-pF =Y ply
=0

then

n +k -1 - p®
kk—l ~ %n
where

(“ 1: lf 1 1) =@+k-1)!/nl k-1, b(fk) =1, k=1,2,3,+ and
n=20,1,2,---.

Now, in (1), we replace asx +a,x? with y so that combining (1) with (3)
we may then write

o~ (k) o~ (k)
~ v o_ v
PILMEUED DR M
v=0 v=0
It is easy to prove with induction that
&) (n - j\ n-2j j _ k)
Ebn—j( T A T B
j=0

and combining this result with

k) [(n+k-1
b "( k—l)
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leads to the following generalized Fibonacci convoluted sum formula:

@ p = Z(n +k-1-j)(n7j)a?-2jag

n . J
J:
m=0,1,2,-++,k=1,2,3,---).

Now in (2), we replace a;x +a,x? +33X3 with y so that combining (2)
with (3), we may then write

o0 [e o}
E b‘(/_k)yv _ ZT‘(,k)Xv ’
v=0

v=0

and by comparing coefficients, it is easy to prove with induction, that

r
) _ k) (n-2r\ (2r -j\_n-4r+_2r-2j _j
Ty = Z Z by _ar\ar - j i )M 22 %
r=0 j=0
k) n-2r-1\(2r+1-j\_n-4r-24j_2r+1-2j_j
* by or-i\or -1+ j j A4 e’ a3
and combining this result with

k) _(n+k -1
bn —(k—l)

leads to the following generalized Tribonacci convoluted sum formula:

r

k) _ k+n-2r-1\/n - 2r\(2r - j\_n-4r+j_2r-2j_j

Tn “L Z[( k -1 )<2r—j>( j ay ay ag
r=0 j=0

(5) . .
k+n-2r-2 | { n-2r-1\{ 2r+1-j\_n-4r-2+j_2r+1-2j_j
+ ( k-1 ) <2r+1—j )( i )ai 2y Jag]
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where n =0,1, 2, -« and k =1, 2, 3, =+,

THE GENERALIZED FIBONACCI NUMBER
EXPRESSED EXPLICITLY AS A DETERMINANT

We shall now prove the following five statements:

k) _ k) (k)
L nF == ayk +n - 1)Fn_1 + a5k + n - 2)]§‘n__2 s
where
FR =1, PR - ak, n=2,3 -, k=23, ...
nr®
. '}'?'(k)_ =p1+d Q 4.1 9,
n-1 p_2+§+---+f);__l+f);

Where p] = ai(k+n'j) (J =1: 29 3,"',11),
U1 = a,n - m)@k +n-m - 1), (m =1,2,3,°**, n-1),

(n= 2,3,
k= 2,3,°) ,
ng) =1,
ka) = aik .
III. (ai + 4a, )kalk_';l = aian(lk) + a5(4k + 2n - Z)F][(lll_(_)1 s
where Fék) =1
Fi(k) = aik
n = 1,2, .-

k=1,2,3,°°".

n ) ((ai+1+((afr1)2+4az7%+4a2 )‘} )/2)" - ((ag+1-((ag+1)2+4a, )“} )/2)"
v. Z Fn-v -
v=1

Y
((ai+1)2 + 4:3.2 )2
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V. F(k)
n

= K(p1s03s°** »AnsPp)/nl 5 (py»q, are identical to those in (ii) with gy
= 0)

where n,k =1,2,3,°°+ and K(py,d,***,qy +ppy) is the determinant given

below in (6).

(6)  Klpg,aps " »apspy) =

Pt @@ 0 O
-1 pp q3 O
0 -1 p3 a4
0 0 -1 py
0 0 O 0
0 0 O 0

The table below of the generalized Fibonacci Numbers (in the table, we

have replaced ay, a; in (1) with ay

a and a, = b)

0 1 2 3 4
0lo0 o 0 0 0
1)1 a a2 + b ad + 2ab at + 3a%p + b
2 |1 2 3a%+ 2b 4a% + 6ab 5a% + 12a%b + 3b?
311 3 6a%2+3b 10a% + 12ab  15a! + 30a% + 6b?
(7)
k 1 ka

may be constructed as follows:

(8) To get the kth
multiplied by the k

th

element in the nth

element in the (n-1)

column, we add the product of
st

a
column and the product of b
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_z)nd

multiplied by the kth element in the (n column together with the (k-l)s't

element in the nth column,

th th k)

We write the k™ element in the n™ column as F ', so that a restate-

n
ment of (8) reads
©) Fr(lk) = alFl(:‘_)l + aZFr(lli)z + Fl(lk'l) ,
where
W -1
Fik) = aik
0 = FéO) =F1(0) - Fz(o) = eee
n = 2, 3’ cee
k=1,2,3,""".

PROOF OF I, W, III, AND IV

We use (9) to get

[ e] 0 [>2] o0
(DY Fl(lk) X' =ay Yy Fx(lk-)l X +ay Y ng)z e Fl(lk—l) 2

n=2 n=2 n=2 n=2
o0 (0 0] [e o}
= ax Z Fr(1k) 2+ ER Z Fg{) <+ Z Fg{"l) <,
n=1 n=0 =2
for k=1, 2, *** . Then

0 o] 0
Z Fr(f{) £ - ng) - F§k) X = 44X Z Fg{) x* - aing) X + ax? Z Fg{) %"
n=0

n=0 n=0

oo
+ Z Fr(lk_l) X% - Fék_l) - ng_l)x ,
n=0

and therefore
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oo
(1 - X - azxz) Z Fl(lk) xn = Fék) - Fék_l) + (F?{) _ aiFék) _ Fj(.l{—l))x

n=0 ®
+ Z Flfk—l) = .
n=0
Now
(k) (k-1) 1-0=1ifk=1
Fo o - F 1-1=01ifk 2
and
F(k)_aF(k)_F(k_1)= ai-a1-0=0 if k=1
1 10 1 ak - a5 - ayk - 1) =0 if k 2

for k=1,2, 3, ***, and

e
SF9 -0,
n
n=0
Therefore
(v o]
o -1 k-1) _n
P Fr(lk) = (1 - ax - apx?) D Fox &k =
n=0 n=0
and

(e 2]
3 Fl(ll) == 1 - ax - atzxz)"1 .
n=0

From this, we have at once

-0,
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oo
(a1) (1 - ax - azxz)—k = Z F;k) b k =1,2,3,"").
n=0

Differentiation of (11) leads to
[ o} s o}
k(2a2x + ai) Z Fr(lk-l-l)xn = Z nFék)Xn_l N
n=0 / n=1

and comparing the coefficients we conclude that

(k+1)
n-1

k-+1)

n-2 ) = nFI(lk) k =1,2,3,>"*,n=2,3,""").

(12) k(F + 2a,F

Combining (12) with (9), we get
k) _ (k) (k)
(13) nF vo= ayk +n - l)li‘n_1 + a3(2k + n - Z)E‘n_2

for k = 2,3,""", n=2,3,"°°, 339" =1, and Fik) = a;k. This completes
the proof for I
When we divide (13) by Fl(lk_)l, we have

ar®
Tch' =ayk +n-1)+a@ +n-2@-1  (0=2,3,"*,k=2,3,"*")
F

n-1 (k)
(n - 1)Fn-1
Fn—2
which in turn along with Fék) = 1 and ka ) = ak, implies IL

The identity
ai + 4:3,2 = 432(1 - X - azxz) + (3,1 + ZaZX)Z

may be written as
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a? + 4a, 4a, (ag + 2a,x%)?
= +
Kk Z
(1 - ax - a,x%) (1 - agx - ayx? - a4X — x> e

1) k =

Differentiation leads to

(ai + 4:3.2 )kX 432k.X

(1 - ax - apx? et (1 - ax - ayx?) -
n=1
Now, by comparing coefficients, we conclude that
(15) (a1 + 4a, )kF(k n _ aian(lk) + as(4k + 2n - Z)Fr(lk_)
when F(k) =1, F§k) = a4k, n = 1,2,3,""", and k = 1,2,3,""°
proves III.

1,2,3, "

=k
Tt (@ + 2a5%) Z nF

207

which

We observe that Equations (II) and (III) immediately give an expression

for
2 (k+1)
(a1 + 432)Fn_1

ka

n 1
in the form of a continued fraction, for n = 2, 3, ***, and k =

(Proof of IV). In (9), we have
k) _ (k) (k) (k-1)
Fn = aiFn_1 + azF o ¥ F s

so that

(16) EF(V)—aZFnV1+aZZFnV_ ZF(Vl

v=2

n=2,3,-
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We see that

n-1 n

(v) _ (v-1)

Z Fn-v—l B Fov

v=1 v=2
and we write (16) as

n n-1 n-2
7 v) = vy V)
an Z Fn-—v (ag + 1) Z Fn—v—l + azz Fn—v—Z )
v=1 v=1 v=1
We let
n
_ W)
Un Z Fn—v ’
v=1
then
n-1 n-2
- v) _ (v)
Un-1 Z Fn—v-l ? and Up-2 = Z Fn—v—2 ?
v=1 v=1

so that (17) becomes
(18) u, = (ay + l)un_1 tau o .
Replacing n with n + 2 in (18), we have
(19) U, = (ay + 1)un_'_1 +au
where

uy =Fy=1, F((,Z)+F1=1+a1=u2, and n=1, 2,3, """
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We now solve (19) for w by continued fractions (see [1]), and get

n
Uy = (g + 1 + s - (a; + 1 - s)h/2"% = Z FI(I‘:)V )

v=1
where
1
s = ((a; + 1)% + 43,)%, n=1,2,3, -,

which completes the proof of IV.
PROOF OF V
Combining Euler's expression for a continuant as a determinant (see [2])
with (II) and (6), leads to

20) nFr(lk) _ K(prlz: e ,qn,pn)
( Fr(gl B Iﬂpzs%,'“ sqn9pn) ?

for n,k = 2,3,4,°°° .

Note: For convenience we let
k) ;&) _
F o /F 1 = U ).
Now, using the values of pj and A1 in (I), we write

(21) nUk(n) = Kfayk +n - 1),a5(n - 1)@k + n - 2),* - +,a,5(2k),a:k)
K(a;jk +n - 2),a;m - 2)@k +n - 3),---,a,(2k),a4k) ’

(n - 1)Uk(n -1)=K(yk +n-2),a5m - 2)(2k + n ~ 3),+ -+ ,a5(2k), a4k )

k(ai(k +n - 3),a2(n - 3)(2k +n - 4:),“ ° ,az(Zk),aik)
3Uk(3) = K(ai(k + 2),3.2(2) (2k + 1), ctcy, 32(21{), aik)
[a,& + 1) a;(2k)
-1 aik
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2Uk (2) = 3.1 (k + 1) Ay (2k)
-1 aik
alk

We now multiply all the equations in (21) from top to bottom to get

n
(22) n! j[=]2 U, G = n! Fr(lk) /Y = Kppape e 29, 5P, ) /2k

for n,k = 2, 3, 4, - .
Now combining (I, with Fj(k) = a4k) with (22) completes the proof of V.
We resolve for k =1 (@ =0, 1, 2, --+) by the use of continued frac-

tions (see [1]), and we have

Foo= (g + W - g - et

where

1
V = (@ + 4a,)? ,
and

Fl’l = aiFn + aZFn—z (Fo =1, F1 = 31) .

-1

FORMULAS

For F(t) (t = 2, 3, and 4) as a function of F and F .
n n-1 n
Let

A = a} + 4a,, Bk,n) = 4k +2n - 2,

where
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r =1, B = ak, nko= 1,23,
and

Fp = aiFfp g v aF, 5

(where a; and a, are rational integers); then from ({II), we have

(23) AkF‘[(lli-;l) = ainFr(lk) + azB(ksn)FIflf; .
In (23), we have the following: when k = 1, then
24) AFP = apF_ + 9,BOOF,

when k = 2, then

ZAFI(I?:)i = aian(lz) + aZB(Z,n)F(le ,

so that multiplying by 1:A, we get

3 2 2
ZIAZFI(I_)1 = ainAFl(l) + aZB(Z,n)AFI(l_)1 .

and combining this with (24), we write (using the identity F, = a,F

29F)-2)

n-1

3
2!A2F1(1—)1 = azB(2,n)(a1nFn + aZB(l,n)Fn_l)

+ amn(ay(n + 1)Fn+1 + a,B(1,n + 1)Fn)

(25)

and replacing Fn 41 (in (25)) with Fn 4= aan + aZFn-l leads to
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(3)

Aan—l = [(aiaZnB(l,n + 1) + ayanB(2,n) + a:;n(n + 1))Fn
(26)

+ (a3B(1,n)B(2,n) + alan(n + DF, 17>

when k = 3, then in the exact way we found (26), we prove that

34 _

27) 1A Fn—l M+ N,

where

a@inB(1,n + 1)B(3,n) + a4anB(2,n)B(3,n) 1
+ aiazn(n + 1)B(3,n) + ajagnB(l,n + 1)B(2,n + 1)
M = 3 Fn’

+ a”iazn(n + 1)(n + 2) + ajayn(n + 1)B(1,n + 2)
+ a?iazn(n + 1)B(2,n + 1) + a‘;’n(n + 1)(n + 2)

and

agB(l,n)B(Z,n)ZB(3,n) + aﬁagn(n + 1)B(3,n)
N =

+ afafn@ + DB(L,n + 2) + afajn@ + VBE@,m + V| F .
+ a‘iazn(n + 1)(n + 2)

REMARKS

The above method may be used to evaluate formulas of the Fl(lk) for
values of k = 5 and higher.
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THE GENERALIZED FIBONACCI NUMBER EXPRESSED AS A LIMIT

We now prove that
. (k+1 k 3
\G! Jlim Y/o+ 05F) = @+ a6 + 4e) D /2N

when

lim (4k - 2)/n) = 0 (k,n =1,2,3,°*°).
- 20

Let
) 1
(28) A =2af+4a, V=A% H=4Hy+V),
where
Fo =1, F; = a4, and ay,a

are rational integers.
It is easy to prove by use of continued fractions (see [1]) that

Fo= (@ + V" - @ - 2" @= 01,200,
and then by elementary means we show that
(29) im (® /F ) = Hay +V) = H.

Now, combining (28) with (III), we have

(k+1)

(30) AKF

k k)
= alnFI(l) + ay(4k + 2n - Z)Fr(l-l s

where n,k = 1, 2, 3, *°- ,
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In (30), we have the following: when k = 1, then

@ _
AFn—l = ainFn + a2(2n + 2)Fn_1 N

and dividing this equation by nFn_ we have

1’

) _ 2n + 2
AFII—]. = aiFn + ay - a— N

nF

n-1 Fn—l

where combining this result with (29), we write

[March

. (2) 1. _ .
(31) A(nh_ljrloc Fn-l /nFn_l) = nll»moo (aiFn/Fn—l +ay(2n+2)/n) = aH +2a,;

when k = 2 {(in (30)), then

82) 2AF1(13_)1 = ainF[(lz)(Fn /F,) + a@n + 6)FI(12_)1

Multiplying both sides of (32) by A/.~n2Fn_1, we now write

2n2(F %) /0¥ ) = a1<AFf12) /F)A/0)F /F 1)

n-1
(33)
+ a, (-%Ilnlg) (AFI(12_)1

Then combining (33) with (31) leads to

. (3)
(34) 2A2(n1511m Fn-l /nan—l)

(3.1H + 23.2 )2;

when k = 3 (in (30)), then

(35) 3AF514_)1 - ainFl(ls)(Fn JB.) + aylen + 1°)FS)1

multiplying both sides of (35) by 2A2/n3Fn_1, we now write

= ay(ayH + 225)H + 2ay(ayH + 2ay)

/nFn—l) .
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sras@® /moE, ) = ayeatr® surw )@ /F )
(36)

2n + 10 2 (3) 2
+ ay (——n >(2A Fo 1 /n Fn—l)

where combining (36) with (34) leads to

. 4)
3! A3(nl1_1'n9o F /n3Fn_1) aj(aH + 225)%H + 2a5(aH + 2a,)2

(37)

(aiH + 232 )3 .
Then, step-by-step, and with induction, we prove that

(k+1)

n /@ l)an) = (4H + Zaz)k )

k ..
(38) ktA n1_1_:_r'nm (F
where replacing the A and H in (38) with their respective values in (28), we
complete the proof of VI.
REMARK. It may be interesting to note that if aj + 4a, is replaced by
aj +4a, = (a;k)? in the right side of VI, then of course

im ERFE 0+ DEF ) = e (e = 2.71828++-) .
n oo n - n

k — o

AN EXPLICIT FORMULA FOR THE TRIBONACCI NUMBERS

Let
t -1 00
n
1- Z arxr =1+ }: cln,t)x ,

where the a, are rational integers.

In a recent paper (see [3]), it was proved that it is always possible to
express the c(n,t) by an explicit formula when t = 1, 2, 3, 4, and 5.

Then, using the methods in [3] we find the following Tribonacci formula
(Tn = c(n, 3):
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xi(x?+2 - x;1+2) + xz(inHz - x?_'-z) + x3(x§1+2 - x?+2)
(39) Th = 2 2 2 2 3 2 ’
x3(x3 - X3) + XXy - X3) + x3(x5 - Xy)
where
Xy = 74+ 4/924 + 1/3 ,
Xy = zy + 4/9zy + 1/3
X3 = 73 + 4/9z3 + 1/3 ,
with
2y = (1/3)(3 /33 + 1913,
7y = -(2/2)(1 - i/3) v 4= [CD)
z3 = -(z4/2)(1 + iV3) ’
and
n = 0,1,2,°°° .
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