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1. Let R(N) denote the number of representations of

(1.1) N = Fk1+Fk2+"'+Fkt’
where
(1.2) k1>k2>--->kt_>_2.

The integer t is allowed to vary. We call (1.1) a Fibonacci representation of
N provided (1.2) is satisfied. If in (1.1), we have

- > i= ceo - H
(1.3) K-k 2 20 (=1, t-1; k22,

then the representation (1.1) is unique and is called the canonical representa-
tion of N.

In a previous paper [1], the writer discussed the function R(N). The
paper makes considerable use of the canonical representation and a function
e(N) defined by

(1.4) eN) = F + F +

k-1 T Fgpe1 o

It is shown that e(N) is independent of the particular representation. The
first main result of [1] is a reduction formula which theoretically enables one
to evaluate R(N) for arbitrary N. Unfortumtely, the general case is very
complicated. However, if all the k; in the canonical representation have the
same parity, the situation is much more favorable and much simpler results

are obtained.

* Supported in part by NSF grant GP-7855.
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In the present paper, we consider the function R(t,N) which is defined
as the number of representations (1.1) subject to (1.2) where now t is fixed.
Again we find a reduction formula which theoretically enables one to evaluate
R(t,N) but again leads to very complicated results. However, if all the k; in
the canonical representation have the same parity, the results simplify con-
siderably. In particular, if

N =F, +-:++F ky >ky >+ > k. > 1),

=k -k 1 <s<r)y jr=kr’

fI'(t) = f(t, j1’ ceey, ]r) = R(t’N) ’
X t
FI‘(X) = F(x; j13"'9jr) =Zf(t; j;[:"'sjr)x s
t=1
GI‘(X) = F(X; jj, ceey, jr_ls j.r + 1) )

then we have

jo+1

r j +2
ws) o -XM_2_Jdg w-x"" @ ,0=0 @22,
where
ji+l
1 -
Gox) = 1, Gylx) = X_(T_??__)

In particular, if j; = - =jr’ then

00 . -1
> .6.@z" = {1~ [j+1]xz + 52,2

r=0

from which an explicit formula for Gr(x) is easily obtained. Also the case
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j1=-o.=j =j, j:k

leads to simple results.

In the final section of the paper some further problems are stated.

2. Put
ad F Fn+1
@.1) d@,x,y) = I 1 +ax "y ).
n=1
Then
o3 F F o F F
D@, x, xy) = I @ +ay "x ™) o 1 @ +ay % 2,
n=1 n=2
so that
(1 + axy)a, x, xy) = d@, y, x) .
Now put
[0 0]
2.2) @, x,3) = 3 Ak, m, na x™y"

k,m}1=0
Comparison of coefficients gives
(2.3) Ak, m,n = Ak, n-m,m) +Ak -1, n-m,m - 1),

where it is understood that A(kk,m,n) = 0 when any of the arguments is
negative.

In the next place, it is evident from the definition of e(N) and R(k,N)
that
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© F F 1 © K
2.4) 0 a+ax "y ™ = > Rk, N a N yN .
.n=1 N=0

Comparing (2.4) with (2.1) and (2.2), we get
(2-5) R(k: N) = A(ks e(N)’ N) .

In particular, for fixed k, n,

(2.6) Ak, m,n =0 (m#e@m).
It should be observed that A(k,e(n),n) may vanish for certain values of k
and n. However, since
R(n) = i Rk, n) = ff Ak, e(), n) ,

k=0 k=0

it follows that, for fixed n, there is at least one value of k such that
Ak, e(n), n) # 0 .
If we take m = e(n) in (2.3), we get

2.7 VR(t,N) = A, N -eN),eM)) + At -1, N - eN}), eN) - 1).
Now let N have the canonical representation
(2.8) N =TF +:00 +F
with kr odd. Then

e(N) = Fk1_1 4+ eee + Fkr—-l , ’

N -eM = F o+t
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Since kr > 3, it follows that

(2.9) N - e(N) = e(e(N)).

On the other hand, exactly as in [1], we find that

ee) - 1) = N-e(N) - 1.

It follows that

A, N - eN), eN) - 1) = 0,

and (2.7) reduces to

R(t, N) = A(t, e(e(N)) .

We have, therefore,

(2.10) R, N) = R(t, e(N)) (kr odd) .

Now let kr in the canonical representation of N be even. We shall
show that

k -1 S k_-2
R, N) = Rt -1,e’ (Ny))+ S REt-j.e’

=2

(2.11) wy)),

where k_ = 2s,
T

(2.12) Ny = Fy 4o P g0
and
(2.13) ek(N) = e(ek_l(N) )s

e'N) = N.
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Assume first that s > 1. Then as above

2.14) N - e(N) =e(e)),
and
(2.15) e(e) - 1) = ee(N) ).

Thus (2.7) becomes
(2.16) R, N) = Rt, eN)) + R{t - 1, e(N) - 1) (kr > 2).
When kr = 2, we have, as in [1],

N - eN) = Feog * oo ¥ Frp g2 = eleN;)) ,

e(N) -1 =F 4 eee Fkr—l'l = e(Ni) ,

eeM)) = N -e® - 1L
It follows that
2.17) R{t, N) = Rt - 1, e(Ny)) (_=2).
Returning to (2.16), since
)

eN) - 1 4 eae +F

1

+ (Fg + Fg+ .0 +F

Fl-1 -1 2-2

k-1
eMy) + (Fy + Fy + -+« + F

i

2t-2) 2

it follows from (2.17) and (2.10) that

R, e(N) - 1) Rt - 1, e(Ny) + Fg + <+« + F

f

2t-3)
Rt -1, e3Ny) + Fy + ++o + F

]

2t-4 ) -

Repeating this process, we get
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28-2

R, e - 1) = Rt - s, e Ny))

so that (2.16) becomes
(2.18) R, N) = R, e2) + RG - 5, €25720) €, = 25> 2).
If k =4, Eq. (2.18) reduces, by (2.17) and (2.10), to

r

R, N) = Rt - 1, e*(N;) ) + Rt - 2, €¥(Ny) ),

since
(2.19) R(t, N) = R(t, e®;)) (&, = 2).
For k; = 2s > 4, Eq. (2.18)gives
R(t, N) = R(t, e!®) + Rt - s + 1, e2572(N;) ) + Rt - 5, 2572(Ny) )
= R, eSN)) + R - 5 +2, e2572(N;)) + Rt - 5 + 1, e252(y))
+RE - s, e2572(Ny)) .
Continuing in this way, we ultimately get
S
2.200 Rt N = R, ¢2°7200) + T RE - 5, e720) ) .
=2
By (2.17),
REt, €25720)) = Rt - 1, 6251 (Ny) ) ,

so that (2.20) reduces to (2.11).
This proves (2.11) when kr > 2; for kr = 2, it is evident that (2.11)
is identical with (2.17).

We may now state
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Theorem 1. Let N have the canonical representation
N:Fk1+...+Fk ,
where
kj"kj+1—>v 2 (j=1,---,r—1);’kr_>2.

Then, for r > 1, t > 1,

k -1 s k -2
(2.21) R, N) = R(t-1,e  (N;))+ 2 REt-j,e  Np),
j=2
where s = [kr/Z], Ny = Fk1+“' +Fp
r-1
3. For N = Fr’ r 2> 2, Eq. (2.7) reduces to
3.1) R F,) = AG, F_ 0 F ) +AC-1,F o F ;-1
= R¢ F,_4) +AG-1,F o, F _,-1.
Also,
(3.2) Rit, Fr - 1) = Aft, Fr -1- e(Fr - 1), e(Fr - 1))
+ At -1), Fr-l—e(Fr—l), e(Fr—l)—l).
Since
eFagrn ~ 1 = Fagr eFpg - 1 = Fg g - 1o
we have
At-1,F, o, F, -1 =Rt-1F, , -1,
At.-1,F,_ ~-1) =0,

28
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Thus (3.1) becomes

R(t, Fy ) = RG, Fyo ) + Rt -1, Fy - 1),
(3.2)
Rit, FZs—l) = Rft, FZS) .
In the next place, Eq. (3.2) gives
R(t, Foq - 1) = Alt, FZS—Z’ F2s—1 =1 +A¢t-1, Fog_ 29 Fog 1™ 2)
= R(t, Fo 4 - 1)
R(t, Fogi1 = 1) = A(t, F2s~1 -1, FZs) + At -1, Fzs_l—l, Fog - 1)
= Rt - 1, FZS - 1),
that is,
3.3) R(t, F,- 1) = R - A, F.1- 1) (r>2),
where
0 (r even)
A

1 (r odd).

It follows from (3.3) that

R(t, FZS— 1) = Rtt-s+1,0), Rit, 1) = Rit-s+1,1)

Fost1 ™

which gives

Rt, F, -1) =38 )
3.4) { 2s tys-1
R, F 1) =5

28+l ~ tys °

Combining (3.2) with (3.4), we get

R(t, Fyo) = R, Fyogyg) = Rl Fog ) +8; 0
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so that
R, Fy ) = R, Fy  ,) + 5t’s .
It follows that
' _J1 @<Lt <s)
R(t, FZS) T )0t >s) .

We may now state
Theorem 2. We have, for s > 1, t > 1,

R, Fogiq = 1 = Rl Fog - 1) =8 o
_ 1 a<t<s
(3.5) RE, Fog) = R Fog1) = {0 65 o

Let m(N) denote the minimum number of summands in a Fibonacci
representation of N and let M(N) denotethe maximum number of summands.

It follows at once from (2.21) that
(3.6) mN) =r,

where r is the number of summands in the canonical representation of N.

Moreover, it is easily proved by induction that
(3.7) R(r, N) = 1
As for M(N), it follows from (2.21) that

LR 1
(3.8) M(N) < M(Fki_kz b + Fkr-l‘kr w2) t[Ek D

where

Ky k.

is the canonical representation. Now, by Theorem 2,



1970 FIBONACCI REPRESENTATIONS — I 123

M(F, ) = [3k] .
Hence by (3.8),
M(F, + B ) < (20 - k) ]+ [k + 1.

Again, applying (3.8), we get

M(Fk1 + sz + Fkg) < [y - ky)] + [Fy - kg)] + [Hg,] + 2.

It is clear that in general we have
(3.9 MM < [F0y - k)] +-or + [Fk, -k )]+ fk ]+ -1,
so that
(3.10) M®MN) < [$#&]+r-1.

We note also that (2.21) implies
(3.11) R(M(N), N) = 1.

We may state
Theorem 3. Let

(3.12) N =TF_ +-... +Fk
T

be the canonical representation of N. Let m(N) denote the minimum number
of summands in any Fibonacci representation of N and let M(N) denote the
maximum number of summands. Then m(N) = r and M(N) satisfies (3.9).

Moreover,

(3.13) Rm®), N) = RM®N), N) = 1.

It can be shown by examples that (3.9) need not be an equality when r >1.
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4, While Theorem 1 theoretically enables one to compute R(t,N) for
arbitrary t,N, the results are usually very complicated. Simpler results can
be obtained when the kj in the canonical representation
“4.1) N = Fk1+... +Fkr
have the same parity. In the first place, if all the kj are odd, then, by (2.10),

R{t, Fk1 + oo +Fkr) = Rft, Fki—‘l + e +Fkr"1) .

There is therefore no loss in generality in assuming that all the k., are even

It will be convenient to use the following notation. Let N have the canon-
ical representation

4.2) N = szi + oo +F2kr s
where
(4.3) k1> kz > "'> k Z 1

Then, by (2.21) and (2.10),

“.4) RE,N) = R(t - 1, Foky2k, * + Fok,_;-2k,.)

k
r

+ ), Rt -, F2k1—2kr+2 +oeee +Fok -2kp+2):
j=2
Put
4.5) j.o =k -k (s =1,++-,r-1); j. =Kk

and

4.6) fI‘(t) = f(t; jj_"":jr) = R, N) .
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Then (4.4) becomes

@7 £ §is e s dp) = F(E - 15 Gy oo ey Fpo1)
jI‘

+ z ft - w jgs oo, Jp-2s Jp-1 * D.
u=2

By (2.18), we have

Rl Foearea ¥ Pk gook +2)
= R(t’ F2k1—2k1‘ toeee FZkr__l-Zkr)

+ R(t-kyp 3 +kp- 15 F2k1—2kr-1+2+' e
+ szr_2_2kr_1+2) 9

so that

4.8) £t §gs *ov s Jp_2s Jp_1 D

= £ J10r 0+ 5dp_20 Jpo1) FEE = e 1 - 15 Jiet e s iy godpog + 1)

If we put

oo
(409) FT(X) = F(X; j:[s ceey JI‘) = z f(t, j19 Y jr)Xt s

t=1
it follows from (4.7) that (for r > 1) ,

(4.10) F&s §gs 20 » jp) = XFE jip =0y jpo1)

j
x(x - xr)

+ F&G jip o005 Jp-2s Jpo1 + D

1-x

Similarly, by (4.8),
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(4-11) F(x; j1s Tty jr_29 jI‘—l + 1)
+1

i
. . . r-1 . . .

= F& jg» ** o sjpogodp_1) +X Fi1s sip_gsdip-2+t1),
which yields

(4-12) F(X9 j]_,- °° !jI‘—Z:jr_l + 1)

jr—1+1
= F(X; jl:' ° :jr_Z:jr_]_) + X F(X; ji,' .. :jr—3’jr_2)
Jo 4t 12 Jou g e Hgtr-1
+x 712 F(x;ji,--',jr_3)+...+xr1 Fx; jp).
For brevity, put
(4-13) GI‘(X) = F(X; jj_, Y jI‘—l’ jI' + 1) 9
so that (4.10) becomes
(x jr)
_oxx - x
(4.14) FI'(X) - XFI‘—].(X) = —-1—-:—}-(-— GI‘—].(X) ’
while (4.11) becomes
jr_1+1
4.15) Gr—l(x) = Fr—l(x) + X Gr_z(x) .
Combining (4.14) with (4.15), we get
x(1 - xjrﬂ) jr—l-'_2
(4-16) GI'(X) - ——_].-T Gr_l(x) + X Gr_Z(X) =0,

Thus Gr(x) satisfies a recurrence of the second order. Note that

[e o]

. t
Gi®) = Fx; j; + 1) = ) R, F2j1+2) X
t=1
jit+l .
Sy b El- K1l
= X = ’
1 -x
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[e o]
Col) = PG jpo J2 + 1) = FIRE Foy piin + Fojun)
t=2

Now, by (2.21),
jot1

R(ts Fojiojpez + Fajpen) = BE =1 Fyy 1) + 20 RE = u, Fyy )

u=2
so that
i1 21 §gtHl
Got) = x xt + 3 x* > x
t=1 u=2 t=1

x2(1 - %) + x2(1 - x2) x(1 - |
1 - x 1-x 1-x

+1
)

1, Eg. (4.16) holds for all r > 2.

Hence, if we take Gyx)
We may state
Theorem 5. With the notation (4.2), (4.6), (4¢.9), (4.12), fr(t) = R(t,N)

is determined by means of the recurrence (4.16) with

_ g
Gox) = 1, Gyl = LX)
and
iyt
F.&) = G.& - x G, ;& .

It is easy to show that Gr(x) is equal to the determinant

'
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x[jg + 1] _xI1?2 0 oo 0
-1 x[jp+1]  -x2*2 . 0
(4.17) Dr(x) = 0 x[jg+1] e 0 ,
0 0 0 x[i, +1]
where
(4.18) [] = @-%x)/@-x.
Indeed,

Di(x) = x[j; + 1] = G4&) ,

Dyx) = x[jg + 1][jy + 1] - LJit2 X[ + 1] [52] + ¥[§1] = G,

and

+2

i
r-1
D, & -

(4.19) D &) = x[i_ +1]D_ ® - x

Since the recurrence (4.16) and (4.19) are the same, it follows that
Gr(X) = Dr(x) .

5. When
(5.1) j1=j2=--. =jr=j ’
we can obtain an explicit formula for Gr(x). The recurrence (4.16) reduces to

+2

(5.2) G,® - x[j - 1]G,_,@ + ¥, =0 (22).

Then
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b P
r .
Y G®zh =1+ [j+1]xz+ 3 G,r(x)zr
Ir= r=2
i j+2
=1+ [j+1]xz + 3 {x[j + l]Gr_l(x) - x Gr_z(x)} zF
r=2
3 [+ o]
=1+ ([j +1]xz + xJ"-2 z2) ), Gr(x) zr
r=0
so that

© . -1
Y G.&) zf = @ - [j+1]xz + «1*2 z%)
r=0
) . s
=Y 28+ - 1 )
s=0
0 S .
=YY n* (st) [i~+ 1]S_tx(3+1)t 2t
s=0 t=0
Hence
w .
(5.3) @ = ¥ 1 (r : t) [j+ 1251

2iKr

Finally, we compute Fr(x) by using

_ j+1
(5.4) Fr(x) = Gr(x) - X Gr_l(x) .

When j = 1, we have
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2 1 1
> 6w = = — ( -2 )

=0 1 - xz)1 - x%z) 1-x\1-xz 1-x%

which gives

r T
(5.5) G.&) = x?[r] = % (11 — L G=1r>1)
(5.6) F () = £ G=1.
In this case, we evidently have
N = Fyp t Fypgtrer ¥ Fy = Fypg-1s

so that (5.6) is in agreement with (3.4).
For certain applications, it is of interest to take

(5.7) j1=¢-- =j =j, J =k .

Then Gi(x), Gyx), ***, Gr_l(x) are determined by

6.8 G® = ¥ (-1>t(S - t) - 1152889 g <s<),

t
2t<s
while
j+2
(5.9) GL&x) = x[k - 1]G, ;&) - ¥ G, ,&) ,
where

G'r(X) = Gr(x; Jrreends k)

Also,
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(6.10)  FLed) = Fobado oo by k) = x[k]G, 160 - ¥ 76 6.

We shall now make some applications of these results. Since

L 4 eee

2j+1¥2k = Forezj * Fokazjoz " Fokaj

it follows from (5.10) that

2§+1

G.1) 3 R(t,L2j+1F2k)xt =gk - 51 - P 1) G <w.
t

(Note that formula (6.17) of [1] should read

R(L2j+1F2k) = 2jk - j) - 2j - 1)

in- agreement with (5.11).) If we rewrite (5.11) as

t _ _2j+1
> Rit, Loje1Fa)x = X {1+x+e+
t

k-j-1

+ XA +xzj'1)(x+- . +xk'j"1)}

we can easily evaluate R(t, L In particular, we note that

241 F o

(5.12) R, L )> 0 G < k)

2j+1F 2k
if and only if
2j+1 <t 3j+k-1.

Note that, for k = 3j,

2j-1

t 2+1 212
ZR(t,szﬂFGj)x = x {1+x+...+x o +xE e+ x )}.

t
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This example shows that the function R(t,N) takes on arbitrarilylarge values.
When j = k, we have
LokarFox = Faenn - 1o
so that, by (3.4),

v t _ 2k
(5.13) ZR(t, L2k+1F2k) X =X .
t

Next, since

LojtiFox =

Fojeak * Fajuok2 ¥ 0 T Fajop 2 G20,

we get

(5.14) Y R(, L2j+1F2k)xt = x5k - 1] [2k - 1] - 22k - 2]

t G>k>1).

Corresponding to (5.15), we now have

(5.15) R, L D0 G>k>),

2j+1%2
if and only if
2k < t < j+3k-2.

The case k = 1 is not included in (5.14), because (5.5) does not hold
when r = 0. For the excluded case, since

=F F,. ,

Loj+1 2j+2 T Fay

we get, by Theorem 1,
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x - x

(5.16) 3 R, L2j+1)xt =2+ )%
t

G21.

For t = 1, Eq. (5.16) reduces to the known result:

R( =2j-1.

Loj+1)
In [1] a number of formulas of the type

R(F 1) =Fy 4 @>0, REFY)=F, @>1

2 -
2n+1

were obtained. They depend on the identities

cee = 2 -
F4+F8+ +F4ﬂ F4n+1 1,

cee = T2
Fp + Fe * Faneo F2n

We now apply (5.10) to these identities. Then Gr(x) is determined by

(5.17) Gr(x) = Z (—l)t (1‘ t_ t) [3]r—2t XI‘+2t .
2t<r
Thus (5.10) yields

(5.18) Y RG Fy ., - Dx' = x( + %G, ;&) - xig, 6,
t

(5.19) Y R, F2)x' = xG__ () - ¥G_,6)
t

with Gn_l(x), Gn_z(x) given by (5.17) .
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It may be of interest to note that

_ tfr - t\or-2t _
G = X ('1)( t )3 = Forsg -
2t<r

6. The following problems may be of some interest.
A. Evaluate M(N) in terms of the canonical representation of N.
B. Determine whether R(t,N) > 1 forall t in m(N) < t < M(N).
C. Does R(t,N) have the unimodal property? That is, for given N,

does there exist an integer w(N) such that

R({t, N) < Rt + 1, N) m®N) < t< uiN)),

R, N) > Rt +1,N) (eN) <t < M(N)) ?

D. Is Rf(t, N) logarithmically concave? That is, does it satisfy
R2(t,N) > R(t - 1,N)R(t +1,N) (@@m(N) < t < M(N))?
E. Find the general solution of the equation
R, N) = 1.
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