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In [1] , H. H. Ferns discussed minimal and maximal representations of 
positive integers as sums of distinct Fibonacci numbers. S. G. Mohanty ex-
tended those results in [2] by employing a one-parameter family of generalized 
Fibonacci sequences. This paper provides clarification of the concepts of 
maximality and minimality as employed by Ferns and Mohanty. 

For convenience we will reiterate several definitions and results from 
[ 2 ] , with suitably altered notation. 

Definition 1: The generalized Fibonacci sequence {u } with param-
eter r is given by 

U - = U 0 = • ' • = U = 1 r , l r , 2 r , r 
U = U i + U 

r , n r , n - l r , n - r 

for integers n and r such that n > r > 1. 
For brevity, the parameter r will not be made explicit. Thus U = 

U and {u } = {u } . Since we wish to express positive integers as sums 
of numerically distinct terms of {u }, we make the restriction that the first 
r - 1 terms not be employed in any representation. After Mohanty, we asser t 
without proof that every positive integer N has at least one representation in 
{u } subject to that restriction. That i s , there exist integers a. such that 
a. = 0 or a. = 1 for i = r , r + 1, • • • , s; a = 1; and 

1 1 S 

(1) N = £a.U. 
i = r 

Definition 2: Given a representation of N of the form indicated above, 
we define the magnitude of the representation to be the sum of the coefficients 
a.. 

i 
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Definition 3: A representation of N in { u } is said to be Minimal (or 
Maximal) if and only if the magnitude of the representation is less than or equal 
to (or greater than or equal to) the magnitude of every other representation of 
N in {Un}. 

This definition agrees with the intuitive notions of minimal and maximal 
representations in the sense that, for example, a minimal representation em-
ploys the fewest possible elements of the sequence {u }. Ferns , working 
with the special case r = 2 (the Fibonacci numbers) defined these ideas in a 
mathematically simpler but intuitively less satisfying way, which Mohanty gen-
eralized essentially as follows: 

Definition 4: A representation of the form given by (1) in { U } is mini-
mal (or maximal) if and only if a.a.+. = 0 (or a. + a. . _> 1, respectively) 
for all j = 1, 2, • • • , r - 1 and i = r , r + 1, • • • , s - j . 

It is easy to see that, for r = 2, these two definitions are equivalent 
For if a representation in ( F } fails Definition 4, then, for some i , a.a.+-
= 1 or a. + a., - = 0 and the relation i I + I 

Fn+2 = Fn+1 + F n 
can be applied to force conformity to Definition 4 and simultaneously to de-
crease (or increase) the magnitude of the representation, indicating that the 
original representation failed Definition 3 also. On the other hand, any rep-
resentation not in accord with Definition 3 can be made to conform by suitable 
application of the relation cited above, which applications require the existence 
of coefficients a. and a.+- such that Definition 4 fails initially. Hence: 

Theorem 1: If r = 2, then Definitions 3 and 4 are equivalent. 
The main result of this paper is a proof (Theorems 2 and 3) of the con-

verse of Theorem 1. It is clear that every positive integer N has at least one 
Minimal representation and one Maximal representation in { u }. Further, 
we have 

Lemma 1: Every positive integer has a unique minimal representation 
in {u } and a unique maximal representation in ( u ) . 

Proof: This is established in [2] , Lemmas 1 and 2. 
Therefore, it suffices to display, for each value of r greater than 2, 

an integer whose minimal (or maximal) representation is not Minimal (or 
Maximal). Toward that end, we consider the triangular numbers. 
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Definition 5: The triangular numbers { T } are given by 

Ti = 1; T = n + T - . 
1 n n-1 

If in the above definition n is allowed to take on successively the values 
m + 3, m + 4, and m + 5, and the resulting equations are summed, the fol-
lowing useful identity is obtained: 

<2> T m + 5 = T m + 2 + 3 m + 1 2 -

Lemma 2: If k is an integer such that 1 < k < r , then: 

(3) Uk = 1 

(4) U r + k = k + 1 

<5> U 2r + k = r + T k + 1 

<6> U 3r + k = r ( k + 2 ) + T r + T l + T 2 + — + T k + 1 

Proof: These may be established by infinite induction. 
Lemma 3: If r > 6 and r = 3m for some integer m, then 

U10m+1 + U6m+3 + U3m+1 U10m + U7m+4 

Proof: Let r = 3m in Equations (4), (5), and (6): 

<4'> U3m+k = k + 1 

(5'> U6m4k = ^ + T k + 1 

( 6 , ) U9m+k = 3 m ( k + 2 > + T 3 m + T l + T 2 + • *' + T k + 1 

Also, 
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( 7 ) U10m+1 + U6m+3 + U3m+1 " U10m " U7m+4 = U9m+(m+l) 
+ U6m+(3) + U3m+(1) " U9m+(m) ~ U6m+(m+4) 8 

Since the parenthesized term in each subscript of (7) is less than or equal to 
r = 3m > 6 implies that m + 4 < rf we can substitute Equations (4f), (5f), 
(6?) in (7) appropriately with k equal to the term in parentheses: 

U10m+1 + U6m+3 + U3m+1 ~ U10m " U7m+4 
= (3m(m + 3) + T 3 m + T± + T 2 + • • • + T m + 2 ) + (T4 + 3m) + (2) 

" ( ^ ^ + 2) + T 3 m + T l + T 2 + " ' + T m + l ) - ( 3 m + T m + 5 ) 

= T m + 2 + 3m + 1 2 " T m + 5 • 

In view of Equation (2)s this establishes the Lemma. 
Lemma 4: If r > 6 and r = 3m + 1 for some integer m, then 

U10m+4 + U6m+5 + U3m+1 U10m+3 + U7m+6 ' 

Lemma 5: If r > 6 and r = 3m + 2 for some integer m, then 

U10m+8 + U6m+7 + U3m+4 U10m+7 + U7m+9 ° 

Proof: Lemmas 4 and 5 are proved in a manner identical with that above 9 

using Equations (2) through (6), Details are omitted. 
Theorem 2: Given a sequence U satisfying Definition 1 with r ^ 2, 

there exists a positive integer N such that the unique minimal representation 
of N in U is not Minimal* 

Proof: For r > 6? let 

N = U10m+1 + U 6m + 3 + U 3m + 1 i f r = 3 m ' 
N = U10m+4 + U6m+5 + U 3m + 1 i £ ' = 3m + 1, 

and 
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N = U10m+8 + U6m+7 + U3m+4 i f r = 3™ + 2 

[Apr. 

The representation given for N is minimal, but in view of Lemmas 3 , 4 , and 
5, is not Minimal. Similarly, let 

N = 167 = U15 + Uu + U8 + U3 = U14 + U13 + U10 for r = 3, 

N = 62 = U15 + U10 + U5 = U14 + U13 for r = 4, 

and let 

N = 54 = Ulf + Uu + U5 = U16 + U14 for r = 5. 

In each of these cases, the first expression for N is minimal but is obviously 
not Minimal. Thus counterexamples to the minimal-Minimal correlation have 
been exhibited for all sequences {u } corresponding to r > 2; the proof is 
complete. 

Theorem 3: Given a sequence {U } satisfying Definition 1 with r > 2, 
there exists an integer N such that the unique maximal representation on N 
in (U } is not Maximal. 

u nJ — — 
Proof: For r > 5, direct substitution using Equations (4) and (5) serves 

to establish that 

r+2 r 
U2r+5 + E Ur+i = U2r+4 + U2r+3 + U 2r + 2 + £ U r + i • 

i=0 i=l 

Similarly, we can show that for r = 4, 

U13 + U10 + U9 + ^ U i = Ui2 + U i i + U i0 + U8 + UT + U5 + U4 

i=3 

and for r = 3, 
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11 
U14 + E U i = U13 + Ui2 + Ul t + U10 + U8 + U7 + U6 + U4 . 

i=4 

As in the proof of Theorem 2, each of these equations provides two rep-
resentations for N: the first is maximal by Definition 4, but is of smaller 
magnitude than the second, and hence not Maximal. This is sufficient to e s -
tablish the theorem. 

Taken together, Theorems 1, 2 and 3 establish that every minimal rep-
resentation is Minimal and every maximal representation is Maximal in {u } 
if and only if r = 2, which was the promised result. 

Mohanty noted in [2] that {u } is a special case of the generalized Fib-
onacci numbers of V, C. Harris and Carolyn C. Styles [3]; specifically, 

[n/r] 

E 
i=0 

[ n / r ] , v 

where [n/r] denotes the greatest integer in n / r . The Tribonacci numbers 
of Mark Feinberg [ 4 ] , [5] can be defined as the sums of the rising diagonals 
of the trinomial triangle generated by (1 + x + x2) , and can be generalized in 
an analogous manner. If the coefficient of x in the expansion of (1+x+x2) 
is denoted by , , then we can define the generalized tribonacci sequence 
(V } by 1 r , n J J 

v = £ 
r , n *-* 

i=0 

00 , - -, 
n - i(r - 1) 

As before, we asser t without proof that ( v } = ( v } is complete, evenun-
n r , n 

der the restriction that the first r - 1 elements of the sequence not to be em-
ployed in any integer representations. Further, we extend Definitions 3 and 4 
to apply to the new family of sequences, and assert that Theorem 1 can be 
similarly generalized. 

The following theorem is offered without proof. 
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Theorem 2f: If r > 4, there exists a positive integer N such that the 
minimal representation of N in \V } is not Minimal. Specifically, 

N = V 4 r + V 2 r + 3 + V r + 1 = V 4 r - 1 + V 3r + 2 • 

The left side is in proper form for a minimal but the right side has fewer 
digits. One can easily find an infinite number of other exceptions for each r. 
For example, add V5 . to each side for j = 1, 2, 3, • • • . 

One can secure a counterexample for the maximal which is not Maximal 
by subtracting each of those Nfs above from 

4r+l 

£ v, . 
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ERRATA 

Please make the following change in the article by London and Finkel-
stein, "On Fibonacci and Lucas Numbers which are Perfect Powers ," Dec. 
1969, p. 481: 

Equation (14) should read: Y2 - 500 = X3 . 


