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A finite abelian group G is said tohave a simple recurrence relation of
length n if there exist distinct nonzero elements ay, a5, *--, a, of G such
that a; +ay, = a3, a,+ag = ay, **°, a ota =2, a ,+a =a and
an + a; = 2y It is proved that if n = 6m or n = 2038y &3), where (6,m)
=1, a=0,2,0or3 and B =0, 1, or 2, then there exists a finite abelian
group which has a simple recurrence relation of length n.

Let G be a finite abelian group written additively and a4, a5, ***, a
be distinct nonzero elements of G. If

ay +ay = ag, a9 +ag = Q4 °*° a = a_,

’ an—z * n-1 n

a +a = a and a +a, = a
n 1 n

n-1 1 2°

then we say that the ordered set

A = {ag, a5 ", an}
has a simple recurrence relation (SRR). If G has an ordered subset A such
that the cardinal of A is n &3) and A has a SRR, then we say that G has
a SRR of length n. We use the notation £(G) = n to mean that G has a SRR
of length n.

Suppose
A= fan o,y
has a SRR; then we have
ag = a4 + ay, a4 = a4 + 239, a5 = 2ay + 34y,

Upg=0, Uy=1, Uy=1, U3 =2, Uy =3, Us=5,, U,

i42 = U]'_+Ui+1" ce,
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be a Fibonacci sequence ([1], p. 148). Then

1 [f1+ BN [1-a8Y] .
(1) U1=E[<—j-2——> - <-—-2——>], i=0.

Thus

@) gy = Uy +Ujg2g, 120

From an_l +a.I1 =2, and a, + al = 2y, we have

3) U, 4 - Va; +Upa, =0
and
4) (Un_2 + 1)311 + @ g - Da, = 0.

Let

h) = U, , + VU - (U, 4 - D n=2,

n-2
d = (Un—l - 1)’ Un) H

the g.c.d. of U1 and Us and

tw) = 3 h) .

Using (1), we can verify

_ N ! .
®) UU, = UpaUpq = 607 Uy gq 350

Now
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hiw) i (t;n-z ¥ 12)(Un—2 *Upg) - Oy - 1
=Up2-Up1™ UpoUng * Upat 3Un—l -1
= (Un—Z * Un—l)(Un—:Z - Un—l) Uy aUng tUpg T U0pg -1
= UpgUp *UpoUp g Up1 ¥ Upug -1
= ()-ly, + U v U -1 (by ()

Define

5. = 1 if n is even
n 0 if n is odd

Then we have

(6) h@) = U + U - 28

n-1 n+1 n

Eliminate a, from (3) and (4), and we have f(n)a; = 0 and thusby per-

mutation, we have

(7) f@)a, = 0 forevery i=1,2, ", n.

Before we proceed further, we list some examples below. We use Cm
to denote the cyclic group of order m and Cm X Cn as the cartesian product

of Cm and Cn‘

E1) A = {(0,1), (1,0), 1,1)} has aSRRin Cy x Cy ;

(E2) A = {1, 3, 4, 2} has aSRRin Cj;

(E3) A = {1, 4, 5,9, 3 hasaSRRin Cy;

®4 A = {a,0), @,1, (0,1), (1,2), (1,3), (0,1)} hasaSRRin C; x Cg
(€5 A = {1, -5, -4, -9, -13, 7, -6} has a SRR in Cyy;
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(E6) A {(1’2’1)! (1’133)’.(2’0!4)’ (0,1!2)’ (2’131)! (2,2,3), (1’0’4),
(0,2,2)} has aSRRin Cg x C3 x Cj;

1l

®7) A = {1, 5, 6,11, 17, 9, 7, 16, 4} has a SRRin Cyy;
€8) A = {1,8,9,6,4,10,3,2,5, 7 hasaSRRin Cy.

We write £(G) # n if G does not contain any subset A whose cardinal
is n, such that A has a SRR. We note that

(i) because of (7), £(C,) # 3, £(Cg) # 6;

(ii) since (7,f(i)) =1 for i = 3, 4, 5, 6and (18,(1)) =1 for i = 3,
4, -+-, 12, therefore both C; and Cy3 have noSRR of any length;

@ii) although f£(8) = 15, £(Cy5) # 8 if {a;, ay, ***, ag} has a SRR
in Cjys, then from (4), we have 3a, = 9a; (mod 15) and thus a, =
-2ay, 3a4, or 8ay (mod 15).
Case 1: If a, = -2a;, then a3 = -ay, -++, ag = -3ay = a4, which

is impossible.

Case 2: If a, = 3ay, then ag = 4ay, ***, ag = 3a; = ay, which

is impossible.

1]

Case 3: If a, = 8ay, then ag = 9ay, +++, ag = 9ay ag, which
is impossible.
Now we prove

Lemma 1: If

(Un, f(n)) = 1, n # 2@2m + 1),

then l(Cf(n)) = n.

Proof: Since (Un, f(n)) = 1, therefore

d = (Un-l_l’ Un) =1,

and thus

(8) f(n) = h(n) = U

n-1 + U

n+l ~ 28n :
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Also, there exist r and t such that

(9) rU +tf) =1 .
From (3), we have

r(U

el = l)a1 + I'Una =0,

2

Substitute rU, =1- tf(n) into the above equation and make use of the
result of (7); we have

(10) ay = r(l - Un_l)a1 .

Thus

g = 2

+a, = [;‘(1 - Un-l) + 1]'3.1 ,

and in general,
(11) By = [rUi_'_l(l - Un_l) + Ui]al, 0<i=<n-2.

Now we prove that A = {ai, Agy °°°, an}, where ay is chosen such that

(a3, f@)) = 1 and 8949 0<i<n-2 isgiven by (11), has a SRR.

We need to verify

(I ay,ag,*°* 3 considered as elements in C £(n)® are distinct and nonzero;

+ a =a, a

(I1) a;+ay =ag, ag+ag =ag, °°*, a o1 n a1

-+ =

-2 a, = ap, and
+ = .

s T

First we prove (II):
For this part, we need only to verify that a,_1ta, =2 and a,*ta; =

a In fact,

9°

-1 * 4= [I'Un(1 - Un-l) + Un—l]al = [(1 - Un-l) + Un--llal (by ©))
. al;
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ap +a; = [rUn_l(l - Un-l) + Un—?. + 1]3.1
= Un_la2 + (Un_2 + 1)a1 .
Since
= - _ 12
f(n) (Un—:2+1)Un (Un_1 1)?%,
therefore,

rUn(Un_2 + l)a1 + r{l - Un-l)(Un—l - 1)a1 =0,
from which it follows that

(U, 5+ Day + (U | - Day, =0 .

+ = .
Hence a, al 2y

To prove (I), we shall show that

1) ru, ,A-U _)+U; # U, 1-0, )40 0=i<j=n-2,
(13) U, -0, ) +U #1, 0=i=n-2;

and

(14) rU,, 0 -0, ) +U; #0, 0=<i=n-2.

Suppose for some i,j suchthat 0 =i<j=n - 2,

rUi+1(1 - Un-l) + Ui = I‘Uj_l_l(l - Un-l) + Uj .

then

Ty - Upyg)@ - Uy g) + (U - ) = 0

j+l i

and thus

rU, (U Upyg ) = Uy g) + U0 - T;) = 0,

j¥1 T
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from which it follows that

(Ugyg - Upyg)@ - Uy ) + U0 - T)) =0,

j+1
ic€ay

U0 = UjaUna) - G0 - UpgUpg) +

Applying (5), we have

TS i i _ _
(15) gli,j) = (1) Upojer * (VU 53+ Ujug - Ugg = 0

0O=<i<j=<n -2,
We can verify that
-f(n) = g(i,j)# 0) = f@) .

Hence (15) cannot be true.

Similarly, if

rU.

— << 3
1+1(1-Un_1)+Ui =1, 0=i=<n-2,

then

rU, U, @ -0, ) +T U -1 =0,

which implies that
}g:

U, -U ) +0, (U -1 =0,

i+l

i.€. s

U0, - UjqUp g) + Uy - Uy = 0

or
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) i+1 .
(16) k@) = (-1 U i 1*Uy-U, =0, 0=i=n-2,

-i- 1

We can also verify that
-f) <k()(#0) < f@).

Hence (16) cannot be true.
Finally, if

ry, 1 -U, )+ U, =0, 0=i=n-2,

then

i+l

17) w@i) = (-1) Un— + U, =0, 0=i=n-2,

i-1 i+l

But for n # 2 Cm +1), w(@i) # 0, and -f(n) < w(@i) < f(n). Hence (17)
cannot be true.
The proof of Lemma 1 is complete.

Lemma 2. Let Gy, Gy be two finite abelian groups. If
Gy = m, 4Gy =n, m<n, (m,n) = d,

then

=

2(Gy x Gy) = g mn.

Proof: Let

A = {31, Ay *° a‘nl}

be a subset of Gy such that A has a SRR and
B = {biv by s bp}

be a subset of Gy such that B has a SRR. Then we can prove that
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A® B = {ci, Cgy °°° cs}
where

and

c1 = (ags by)y cp = (2, D)y 3 = ey + ey =(ag, )y e = (a b ),

= (algbm+1)9°"’c = (am:bn) ’

C
S

m+1
has a SRR in Gy x Gy.

Lemma 3: If (n,6) = 1, then (Un,f(n)) = 1. :

Proof: We observe that U, is even if and only if n = 3m. Hence if
(n,3) = 1, then Un is odd.

Now, (n,2) = 1 implies that

fn) = 5 (U +U 1)

n-1 n+1

=

It can be proved that if Un is odd, then (Un’ U][1=1 + Un+1) =1 (1],
p. 148).

It is clear that (Un, h(n)) = 1 implies that d = 1. Hence f(n) = Un-l
041’ and thus (Un, fn)) = 1.

From Lemmas 1 and 3, we have

Lemma 4: If (n,6) = 1, then E(Cf(n)) =n.,

From (E1), (E2), (E6), (E7), Lemmas 2 and 4, we have

Theorem 1: If

+U

@l

n==6m or n=23m &3),

where (6,m) =1, o =0,2, 0or3 and B =0, 1, or 3, then there exists a

finite abelian group G such that £(G) = n.
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