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AN INTRODUCTION TO FIBONACCI POLYNOMIALS 
AND THEIR DIVISIBILITY PROPERTIES 

An elementary study of the Fibonacci polynomials yields some general 
divisibility theorems, not only for the Fibonacci polynomials, but also for 
Fibonacci numbers and generalized Fibonacci numbers. This paper is intend-
ed also to be an introduction to the Fibonacci polynomials. 

Fibonacci and Lucas polynomials are special cases of Chebyshev poly-
nomials, and have been studied on a more advanced level by many mathemat-
icians,, For our purposes, we define only Fibonacci and Lucas polynomials. 

1. THE FIBONACCI POLYNOMIALS 

The Fibonacci polynomials {F (x)J- are defined by 

(1.1) Fi(x) = 1, F2(x) = x, and Fn+1(x) = xFn(x) + F ^ ^ x ) . 

th Notice that, when x = 1, F (1) = F , the n Fibonacci number. It is easy 
to verify that the relation 

(1.2) F_n(x) = (-l)nHLlFn(x) 

extends the definition of Fibonacci polynomials to all integral subscripts. The 
first ten Fibonacci polynomials are given below: 

Fi(x) = 1 
F2(x) = x 
F3(x) = x2 + 1 
F4(x) = x3 + 2x 
F5(x) = x4 + 3x2 + 1 
F6(x) = x5 + 4x3 + 3x 
F7(x) = x6 + 5x4 + 6x2 + 1 

407 



408 A PRIMER FOR THE FIBONACCI NUMBERS [Oct. 

F8(x) = x7 + 6x5 + 10x3 + 4x 
F9(x) = x8 + 7x6 + 15x4 + 10x2 + 1 -

F10(x) = x9 + 8x7 + 21x5 + 20x3 + 5x . 

It is important for Section 4, to notice that the degree of F (x) is | n| - 1 for 
n ^ 0. Also, F0(x) = 0. 

In Table 1, the coefficients of the Fibonacci polynomials are arranged in 
ascending order. The sum of the n row is F , and the sum of the n 
diagonal of slope 1, formed by beginning on the n row, left column, and 
going one up and one right to get the next term, is given by 

2(n-l) /2 = 2 t 2(n-3)/2 

when n is odd. 

Table 1 
Fibonacci Polynomial Coefficients Arranged in Ascending Order 

n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

x°  
1 

0 

1 
0 

1 

0 

1 
0 

1 

X1 

1 

0 
2 

0 

3 

0 

4 

0 

X2 

1 

0 

3 

0 

6 

0 

10 

X3 

1 

0 

4 

0 

10 

0 

X4 

1 

0 

5 

0 

15 

X5 

1 

0 

6 

0 

X6 

1 
0 

7 

X7 

1 

0 

To compare with Pascal1 s triangle, the sum of the n row there is 2 , and 
the sum of the n diagonal of slope one is F . In fact, the (alternate) dia-
gonals of slope 1 in Table 1 produce Pascal1 s triangle. 

If the successive binomial expansions of (x + 1) are written in de-
scending order, 
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n = 0. 

n = 1 

n = 2 

n = 3: 

n = 4; 

the sum of the 4th diagonal of slope 1 i s F4(x) = x4 + 3x2 + 1, and the sum of 

the nth diagonal of slope 1 i s F (x), or 5 

(1.3) F (x) n 

[(n-D/2]. N 

j=0 

for [x] the g r e a t e s t in teger contained in x9 and binomial coefficient [ . j . 
a s given by Swamy [ l ] and o t h e r s . 

20 LUCAS POLYNOMIALS AND GENERAL FIBONACCI POLYNOMIALS 

The Lucas polynomials | L (X)} a r e defined by 

(2.1) L0(x) = 25 Li(x) = x9 L n + 1 (x ) =xL n (x ) + L n ^ 1 ( x ) 

th Again 9 when x = 1, L (1) = L , the n Lucas number . Lucas polynomials 

have the p r o p e r t i e s that 

(2.2) Ln(x) = F n + 1 W + F ^ W = xFn(x) + 2Fn_1(x) 

x L n ( x ) = F n + 2 ( x ) " F n - 2 ( x ) 

and can be extended to negative subsc r ip t s by 

(2.3) L (x) = (-1)"L (x) . - n n 
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The degree of L (x) is Jn|, as can be observed in the following list of 
the first ten Lucas polynomials: 

L4(x) = x 

L2(x) = x2 + 2 

L3(x) = x2 + 3x 

L4(x) = x4 + 4x2 + 2 

L5(x) = x5 + 5x3 + 5x 

L6(x) = x8 + 6x4 + 9x2 + 2 

L7(x) = x7 + 7x5 + 14x3 + 7x 

L8(x) = x8 + 8x8 + 20x4 + 16x2 + 2 

L9(x) = x9 + 9x7 + 27x5 + 30x3 + 9x 

L10(x) = x10 + 10x8 + 35x6 + 50x4 + 25x2 + 2 . 

If the Lucas polynomial coefficients are arranged in ascending order in a left-
justified triangle similar to that of Table 1, the sum of the n row is L , 
and the sum of the n diagonal of slope 1 is given by 3 - 2 for even 
n, n ;> 2. 

When general Fibonacci polynomials are defined by 

(2.4) Ht(x) = a, H2(x) = bx, HR(x) = x H ^ x ) + Hn_2<x) , 

then 

(2.5) H (x) = bxF -(x) + aF Q(x) 
N n • ' n - 1 ^ n - 2 N 

If the coefficients of the | H (x)|, written in ascending order, are placed in a 
left-justified triangle such as Table 1, then the sum of the n diagonal of 
slope 1 is 

(a + b) • 2<n"3>/2 = (a + b ) - 2 t < n - 2 ^ 
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for odd n, n > 3. (Notice that, if a = 2, b = 1, then H ^ ( x ) = L (x), 
n+1 i r " and if a = b = 1, H (x) = F (x).) n n 

3. A MATRIX GENERATOR FOR FIBONACCI POLYNOMIALS 

Since Fibonacci polynomials appear as the elements of the matrix de-
fined below, many identities can be derived for Fibonacci polynomials using 
matrix theory, as done by Hayes [2"] and others, and as done for Fibonacci 
numbers by Basin and Hoggatt [3], 

It is easily established by mathematical induction that the matrix 

Q 
• ( ; ! ) • 

when raised to the k power, is given by 

k / F k + l ( x ) F k ( x ) 

(3.1) QK = ' K l K 

~ Fk(x) Fk_ l (x) 

for any integer k, where Q° is the identity matrix and Q~ is the matrix 
inverse of Qk. Since det Q = - 1 , det Qk = (det Q)k = (- l )k gives us 

(3.2) F k + l ( x ) F k - l ( x ) - F k ( x ) = ( " 1 ) k ' 

Since Q m Q n = Q m + n for all integers m and n, matrix multiplication of 
Q m and Qn gives 

^ n / F m + l ( x ) W x ) + F m ( x ) F n ( x ) F
m + l ( x ) F n < x ) + F m ( x ) F n - l < x ) 

Q Q = ' F m < x ) F n + l ( x ) + F m-l< x ) F n< x ) F m ( x ) F n ( x ) + F
m - l < x ) F n - l ( x V 

Anv 

while 

n m + n § F m + n + l ( x ) W x ) 

y " I F ± W F • . , . 
m+n m+n-lix), 
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Equating elements in the upper right corner gives 

(3.3) F _, (x) = F ^Ax)F (x) + F (x)F - (x) . 
v ' m+n ' m+1 n m n-1 

Replacing n by (-n) and using the identity 

F_n(x) = (-l)n + 1Fn(x) 

gives 

Then, 

F m - n ( x ) = ( - 1 ) n < - F m+l ( x ) F n ( x ) + F m ( x ) W x » ' 

F j . (x) + (-l)nF (x) = F (x)F Ax) + F (X)F' - (X) m+n m-n m n-1 m n+lx 

= F (x)L (x) . m n 

If we replace n by k and m by m - k above, we can obtain 

(3.4) F m W = Lk(x)Fm_k(x) + ( -Dk + 1Fm_2 k(x) , 

which results in the divisibility theorems of the next section 

4. DIVISIBILITY PROPERTIES OF FIBONACCI AND LUCAS POLYNOMIALS 
Lemma. The Fibonacci polynomials F (x) satisfy 

(2i+l)k-2im(x) ' 

, ,p(m-k)+m+l ( v 
+ (-1) F(2p-l)m-2pk(X) 

for all integers m and k, and for p ;> 1. 
Proof: If p = 1, the Lemma is just Equation (3.4). For convenience, 

call Q (x) the sum of Lucas polynomials in the Lemma. Then, assume that 
the Lemma holds when p = j , or that 
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<A> V x > = *m-*WQj« + ( - 1 ) 3 ( m " k ) + m + l F (23 - l ) m -2 j k « • 

Substitute (2jk - (2j - l)m) for m in Equation (3.4), giving 

F2Jk-<2j-l)mW = L k . W P 2 J k - C l J - D m - k . W + ^ ^ ' ^ V l ^ - D m ^ W • 

Since we want to express F2'k-(2"-l) ^ i n t e r n i s °̂  F _k^9 S 6 t 

2jk - (2j - l)m - k! = m - k 

and solve for kf
9 yielding kf = (2j + l)k - 2jm, so that 

F2jk-(2j- l)m( x ) = L(2j+l)k-2jm( x ) Fm-k( x ) + ( - 1 ) F(2j+l)m-(2j+2)k(x) ' 

Substituting into (A) and using 

F (x) = (- l ) n + 1F (x) -n n 

to simplify gives 

Fm(x) = (Q.(x) + ( -D 3 ( m - k ) L ( 2 j + 1 ) k „ 2 j m (x) )F m „ k (x) 
(j+l)(m-k)+m+l 

+ {"1} *(2j+l)m-(2j+2)kW ' 

which is the Lemma when p = j + 1, completing a proof by mathematical 
induction. 

Notice that the Lemma yields an interesting identity for Fibonacci num-
bers , given below: 

^ ' p £ 1 

To establish (4.1), use algebra on the subscripts of the Lemma and then take 
x = l . 
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T h e o r e m 1: Whenever a Fibonacci polynomial F (x) i s divided by a 

Fibonacci polynomial F , (x), m f k , of l e s s e r o r equal d e g r e e , the r e -
m—j£ 

mainde r i s always a Fibonacci polynomial o r the negative of a Fibonacci poly-

nomia l , and the quotient i s a sum of Lucas polynomials whenever the division 

i s not exact . Expl ici t ly , for p £> 1, 
(i) the r e m a i n d e r i s ±F/r> 1X 01 (x) when 

(2p- l )m-2kp v 

2plmj , , . (2p - 2) M 
2p + 1 IKI > 2p - 1 

o r , equivalently, if ± F
m . _ 2 p ( m . - k ) ( x ) f o r 

J H - < i m - k I < lm? • 
2p! + l ^ I K I 2p - 1 ? 

(ii) the quotient i s ±L,(x) when | k | < 2Jm!/3; 

(iii) the quotient i s given by 

Q P « - E M)i ( m-k ,
L ( 2 1 + 1 ) k .2 t o« - L <-»i<m"k)^.,a+1,<,„-k,« 

i=0 i=0 

for m , k , and p re la ted a s in (i), and by Q (x) + ( - l ) p ( m " k ) if 

_2PHL 
2p + 1 ' 

(iv) the division i s exact when 

2 P m o r k = ( 2 p " 1 ) m 

2p + 1 o r K 2p 

Proof: When 

2 E l m L > | k | (2p - 2)jm| 
2p + 1 i i 2p - 1 
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and the degree of Fm(x) is greater than that of Fm_k(x) , we can show that 
|m| > |m - k| > |(2p - l)m - 2pk|. Since the degree of F n is |n | - 1, we 
can interpret the Lemma in terms of quotients and remainders for the res t r ic -
tions on m, k, and p above, establishing (i), (ii), and (iii). As for (iv), the 
division is exact if 

ir - ( 2 P - ! ) m 

for then 

F / o ^ o , (X) = F0(X) = 0 
(2p-l)m-2pk u 

When k 2pm 
2p + 1 5 

F/o -n Q , (x) = F. (x) = ( - l ) m ~ k + 1 F . (x) (2p-l)m-2pk k-m m-k 

- '"^X^w 
because k is even. Referring to the Lemma, increasing the quotient by 

, -.pdn-kj+m+l+m+l _ , -vp(m-k) 

will make the division exact. 
Corollary 1.1: F (x) divides F (x) if and only if q divides m. 
Proof: If q divides m, then either m/2p = q or m/(2p + 1) = q, 

Let q = m - k and apply Theorem 1. 
If F (x) divides F (x), then let q = m - k and consider the remainder q m 

of Theorem 1. Either 

or 

F(2p-l)m-2pk( x ) = F» ( X ) 

F(2p-l)m-2pk<x) = ± F m-k ( x ) ' 

giving 
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k = ( 2 p - l ) m = (2p - 2)m Q r = 2pm 
2p 2p — 1 9 2p + 1 

by equating subscripts. The possibilities give q - m - k = m/2p or q = 
m/(2p - 1) or q = m/(2p + 1), so that q divides m. 

Corollary 1.2: If the Fibonacci number F is divided by F , , m f 
k, then the remainder of least absolute value is always a Fibonacci number or 
its negative. Further, 

(i) the remainder is ±F 0 , , v when 
m-2p(m-k) 

M T < | m - k | < 1 M . m-M2, 2p + 1 - | - - - l - 2p 

and the quotient is the sum of Lucas numbers; 
(ii) the quotient is ±L, when |k| < 2 |m | /3 , for Lucas number L,0 

Proof: Let x = 1 throughout Theorem 1. Since the magnitudes of Fib-
onacci numbers are ordered by their subscripts, ±F « / , v represents a 
remainder (unless m - k = 2 since F2 = FA = 1). 

To illustrate Corollary 1.2, divide F13 by F7: 

233 = 17 . 13 + 12 = 18 • 13 + (-1) . 

Now, 12 is the remainder in usual division, but we consider the positive and 
negative remainders with absolute value less than that of the divisor, so that 
(-1) = -F j is the remainder of least absolute value. Here, m = 13, k = 6 
< 2m/3, p = 1, and the quotient is L6 = 18. The remainders found upon 
dividing one Fibonacci number by another have been discussed by Taylor [ 4 ] , 
and Halton [5] k 

Corollary 1.3: The Fibonacci number F divides F if and only if q 
divides m, jq|' f 2. 

Proof: If q divides m, let x = 1 in Corollary 1.1. If F divides 
F , let q = m - k. The remainder of Corollary 1.2 becomes F 0 , , v m ^ J m-2p(m-k) 
= F0 = 0 or F __? , , v = ±F . . The algebra on the subscripts follows 
the proof of Corollary 1.1, which will prove that q divides m, provided that 
there are no cases of mistaken identity, such as F = F , |sl r |ql> and 

s q 
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such that s does not divide m9 Thus, the restriction jqj f 2 since 

F2 = Fi = 1. 

Unfortunately, as pointed out by E. A, Parberry5 Corollary 1.3 cannot 
be proved immediately from Corollary 1.1 by simply taking x = 1. That F 
divides F does not imply that F (x) divides F (x), just as that f(l) 
divides g(l) does not imply that f(x) divides g(x) for arbitrary polynomials 
f(x) and g(x). Also, Webb and Parberry [8] have proved that a Fibonacci 
polynomial F (x) is irreducible over the integers if and only if m is prime. 
But, if m is prime, while F is not divisible by any other Fibonacci num-
ber F , I qj ^ 3, F is not necessarily a prime. How to determine all-val-
ues of m for which F is prime when m is prime, is an unsolved problem, 

Corollary 1.4: There exist an infinite number of sequences | s \ having 
the division property that, when S is divided by S , , m / k, the r e -
mainder of least absolute value is always a member of the sequence or the 
negative of a member of the sequence,, 

Proof: We can let x be any integer in the Lemma and throughout Theo-
rem 1. If x = 2, one such sequence is . . . , 0, 1, 2, 5, 12, 29, 70, 1 6 9 , " ° * 

Theorem 2: Whenever a Lucas polynomial L (x) is divided by a Lucas 
polynomial L , (x), m ^ k, of lesser degree, a non-zero remainder is 
always a Lucas polynomial or the negative of a Lucas polynomial. Explicitly, 

(i) non-zero remainders have the form ± L(2D_i) i n_2Dk^ w n e n 

2p|m| , . , (2p - 2)1 ml 
2p + 1 > ! K ' > 2p - 1 

or , equivalents, ± L
2 p ( m „ k ) - m ( x ) f o r 

2p + l | m » - 2p - 1 ' 

(ii) if | k | < 2 f m | / 3 , the quotient is ±Lk(x); 
(iii) the division is exact when k = 2pm/(2p + 1), p ^ 0. 
Proof: Since the proof parallels that of the Lemma and Theorem 1? de-

tails are omitted. Identity (3.4) is used to establish 
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(4.2) L <x) = L, (x)L . (x) + ( - l ) k + 1 L Q1 (x) . 

m k m-k ' m-2k 

Since L (x) = (-1) L (x), it can be proved that -n n 

L (x) = Q (x)L . (x) ±L/0 -v 0 , (x) , mN ^p N ' m - k x (2p- l )m-2pk v ' ' 

for I m | 2 > J m - k | j > |<2p - l)m - 2pk|. Since the degree of L (x) is | n | , 
the res t of the proof is similar to that of Theorem 1. However, notice that it 
is necessary to both proofs that F_ (x) = +F (x) and L (x) = ±L (x). 

Corollary 2.1: The Lucas polynomial L (x) divides L (x) if and only 
if m is an odd multiple of q. 

Proof: If m = (2p + l)q, let q = m - k and Theorem 2 guarantees 
that L (x) divides L (x). q w n r 

If L (x) divides L (x), then let q = m - k. For the division to be 
exact, the term ±L,2 -* 2 , (x) must equal L , (x) since it cannot be 
the zero polynomial. Then, either k = 2pm/(2p + 1) or k = 2pm/(2p-1), so 
q = m - k = m/(2p + 1) or q = m/(2p - 1). In either case, m is an odd 
multiple of q. 

Corollary 2.2: If a Lucas number L is divided by L ,.> then the 
non-zero remainder of least absolute value is always a Lucas number or its 
negative with the form ±L2D/m._u-\ m for 

\m\ < i m . k i< H s 
2p + 1 ^ '- K | 2p - 1 ' 

and the quotient is ±L, when | k | < 2 |m| /3 . 
Proof: Let x = 1 throughout the development of Theorem 2. 
Corollary 2.3: The Lucas number L divides L if and only if m = 

(2s + l)q for some integer s. (This result is due to Carlitz |j>3). 
Proof: If m = (2s + l)q, let x = 1 in Corollary 2.1. If L divides 

L , take q = m - k and examine the remainder LQ , . v of Corollary m 4p\m—K;—m 
2.2 which must equal L , or L. since it cannot be zero. The algebra 

^ m-k k-m 
follows that given in Corollary 2.1. Since there are no Lucas numbers such 
that L = L where | q | f\ s j , and since L f 0 for any q, there are no 
restrictions. 
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Since the genera l ized Fibonacci polynomials H (x) satisfy H (x) = 
b x F ^ - (x) + a F ^ 0 (x), we can show that 

(4.3) H m (x) = L k (x)H m _ k (x) + ( - D k + 1 H m - 2 k ( x ) > 

but s ince H m (x) f ±H_ m (x) , we have a m o r e l imi ted theorem. 

T h e o r e m 3: Whenever a genera l ized Fibonacci polynomial H (x) i s 

divided by H , (x), 2 m / 3 > k > 0, any non-ze ro r e m a i n d e r i s a lways a n -m—vL 
other genera l ized Fibonacci polynomial o r i t s negat ive , and the quotient i s 

L k (x) . 

As a consequence of T h e o r e m 3 , when a genera l ized Fibonacci number 

H i s divided by H , a non-zero r e m a i n d e r of l e a s t absolute value i s g u a r -

anteed to be another genera l ized Fibonacci number only when jm - q| < 2 m / 3 . 

Tay lo r [4 J has proved tha t , of al l the genera l ized Fibonacci sequences JH | 

satisfying the r e c u r r e n c e H = H - + H _ 2 , the only sequences with the 

division p rope r ty that the non-ze ro r e m a i n d e r s of l e a s t absolute value a r e 

a lways a m e m b e r of the sequence o r the negative of a m e m b e r of the sequence , 

a r e the Fibonacci and Lucas sequences . F o r your fur ther read ing , Hoggatt 

[ 7 ] gives a lucid descr ip t ion of divisibil i ty p r o p e r t i e s of Fibonacci and Lucas 

n u m b e r s . 
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[Continued from pe 406. ] 

the first two terms in the Fibonacci series0 Who could resist the 
temptation to test the conjecture that y/x = F - / F ? 

Now let x = kF , y = kF ,-. Then, 
n J n+1 

Fn+l / Fn = !MFn + F n + 1 ) - l ] /kP n + 1 . 

so 

but 

k(Fn+l " V W = "Fn • 

F n + 1 " F n F n + 2 = (" 1 ) U • 

hence n is odd, and we have k = F . So, 

x = F | m _ 1 = 1, 4, 25, 169, etc. , 

y = F 2 m - l F 2 m = 1 ' 6 ' 4 0 ' 2 7 3 ' e t c -

Hence, the children were 4 and 6 years old, Charlie 40, and Mary 25. 


