A LUCAS ANALOGUE

BROTHER ALFRED BROUSSEAU
 St. Mary's College, California

The Lucas sequence is defined in terms of the roots r_{1} and r_{2} of the equation $x^{2}=x+1$ by the formula:

$$
L_{\mathrm{n}}=\mathrm{r}_{1}^{\mathrm{n}}+\mathrm{r}_{2}^{\mathrm{n}}
$$

For this simple quadratic equation, the roots can be calculated as:

$$
r_{1}=\frac{1+\sqrt{5}}{2}, \quad r_{2}=\frac{1-\sqrt{5}}{2}
$$

It can be ascertained directly that $r_{1}+r_{2}=1$ and $r_{1}^{2}+r_{2}^{2}=3$. Then, since

$$
\mathrm{r}_{1}^{\mathrm{n}+1}=\mathrm{r}_{1}^{\mathrm{n}}+\mathrm{r}_{1}^{\mathrm{n}-1}
$$

and

$$
\mathrm{r}_{2}^{\mathrm{n}+1}=\mathrm{r}_{2}^{\mathrm{n}}+\mathrm{r}_{2}^{\mathrm{n}-1}
$$

it follows by mathematical induction that if:

$$
L_{n-1}=r_{1}^{n-1}+r_{2}^{n-1}
$$

and

$$
\mathrm{L}_{\mathrm{n}}=\mathrm{r}_{1}^{\mathrm{n}}+\mathrm{r}_{2}^{\mathrm{n}}
$$

then

$$
L_{n+1}=r_{1}^{n+1}+r_{2}^{n+1}
$$

by direct addition of the two equations.

If we seek to extend this idea to a sequence in which the last three consecutive terms are added to get the next term, the corresponding equation to be used is: $x^{3}=x^{2}+x+1$, which has three roots r_{1}, r_{2}, r_{3}. These need not be calculated. It suffices to know that:

$$
\sum_{i=1}^{3} r_{i}=1, \quad \sum_{i, j=1}^{3}{ }^{\prime} r_{i} r_{j}=-1 \quad \text { and } \quad r_{1} r_{2} r_{3}=1
$$

using the standard relations between roots and coefficients of an equation. The analogous definition of a sequence in terms of the roots would be:

$$
\mathrm{T}_{\mathrm{n}}=\mathrm{r}_{1}^{\mathrm{n}}+\mathrm{r}_{2}^{\mathrm{n}}+\mathrm{r}_{3}^{\mathrm{n}}
$$

The first three values calculated on the basis of symmetric function formulas would be:

$$
\begin{gathered}
T_{1}=\sum_{i=1}^{3} r_{i}=1 \\
T_{2}=\sum_{i=1}^{3} r_{i}^{2}=\left(\sum r_{i}\right)^{2}-2 \Sigma r_{i} r_{j}=3 \\
T_{3}=\sum r_{i}^{3}=\left(\sum r_{i}\right)^{3}-3\left(\sum r_{i}\right)\left(\sum r_{i} r_{j}\right)+3 r_{1} r_{2} r_{3} \\
T_{3}=1+3+3=7
\end{gathered}
$$

With these values defined, T_{4} would be equal to

$$
\Sigma r_{i}^{4}
$$

on the basis of the relation

$$
r_{i}^{4}=r_{i}^{3}+r_{i}^{2}+r_{i}
$$

Carrying the procedure one more step, if the last four quantities in a sequence are added to obtain the next quantity, the roots of the equation

$$
x^{4}=x^{3}+x^{2}+x+1
$$

would be employed with the sequence defined by:

$$
Q_{n}=\sum_{i=1}^{4} r_{i}^{n}
$$

With the aid of symmetric functions, it can be shown that:

$$
Q_{1}=1, \quad Q_{2}=3, \quad Q_{3}=7, \quad Q_{4}=15
$$

From these preliminary investigations, two points emerge: (1) As we extend the Lucas analogue, the basic starting quantities carry over from one stage to the next; (2) All the initial quantities are of the form $2^{k}-1$. That these relations remain generally true is not difficult to prove.

Consider the $\mathrm{n}^{\text {th }}$ order recursion relation:

$$
x^{n}=x^{n-1}+x^{n-2}+x^{n-3}+\cdots+x+1
$$

which corresponds to adding the last n quantities to obtain the next quantity in a sequence. Expressed as a polynomial equated to zero, this becomes:

$$
x^{n}-x^{n-1}-x^{n-2}-x^{n-3}-\cdots-x-1=0
$$

so that regardless of the degree of the equation:

$$
\Sigma r_{i}=1, \quad \Sigma r_{i} r_{j}=-1, \quad \Sigma r_{i} r_{j} r_{k}=1, \text { etc. }
$$

Then, since

$$
\Sigma r_{i}^{j}
$$

is expressible in terms of those summations which have j or less components, it follows that the sum must be the samefor any two equations having a degree greater than or equal to j. This accounts for the persistence of the basic starting quantities from one stage to the next.

Now assume that for the equation of degree $n-1$

$$
\Sigma r_{i}^{j}=2^{j}-1 \quad(j=1,2, \cdots, n-1)
$$

By the equation for the $n^{\text {th }}$ degree:

$$
\begin{aligned}
\Sigma r_{i}^{n} & =\Sigma r_{i}^{n-1}+\Sigma r_{i}^{n-2}+\Sigma r_{i}^{n-3}+\cdots+\Sigma r_{i}+\Sigma 1 \\
& =\left(2^{n-1}-1\right)+\left(2^{n-2}-1\right)+\left(2^{n-3}-1\right) \cdots(2-1)+n \\
& =\sum_{i=0}^{n-1} 2^{k}=2^{n}-1
\end{aligned}
$$

This proves the second contention.

CONCLUSION

For an $n^{\text {th }}$ order recursion relation of the form

$$
\mathrm{T}_{\mathrm{m}+\mathrm{n}+1}=\mathrm{T}_{\mathrm{m}+\mathrm{n}}+\mathrm{T}_{\mathrm{m}+\mathrm{n}+1}+\mathrm{T}_{\mathrm{m}+\mathrm{n}-2}+\cdots+\mathrm{T}_{\mathrm{m}+1}
$$

it is possible to define a Lucas-type sequence using the roots of the equation $\mathrm{x}^{\mathrm{n}}=\mathrm{x}^{\mathrm{n}-1}+\mathrm{x}^{\mathrm{n}-2}+\mathrm{x}^{\mathrm{n}-2}+\cdots+\mathrm{x}+1$ with

$$
\mathrm{T}_{\mathrm{m}}=\Sigma \mathrm{r}_{\mathrm{i}}^{\mathrm{m}}
$$

With such a definition, the first n starting values would be given by:

$$
\mathrm{T}_{\mathrm{k}}=2^{\mathrm{k}}-1 \quad(\mathrm{k}=1,2, \cdots, \mathrm{n})
$$

