
AN ADDITION: ALGORITHM FOR GREATEST COMMON DIVISOR 
D. E. DAYK1N 

University of Reading, Reading, England 

ABSTRACT 

An elementary algorithm is presented ifor finding the greatest common 
divisor of two numbers. It is trivial to programme and fast, even for large 
numbers. Only addition is used, and the only storage space needed is enough 
to hold the two numbers. 

About three years ago, I discovered an algorithm which K„ Y. Choong, 
C. R. Rathbone and I used to obtain the first 20,000 partial quotients of the 
continued fraction of IT* I here show how an adaptation of the algorithm may 
be used to find the greatest common divisor (g.c.d.) of any two positive inte-
gers . The complete process when the numbers are 1168 and 2847 is : 

N 

Z 

Z 

z 
N 

N 

Z 

Z 

z 
N 

8832 = 

2847 = 

1679 

0511 

9343 

9854 

0365 

0219 

0073 = 

9927 

0000 

10000 -

g. c. d. 

- 1168 

2847 

= 73 

I will now describe the general process. Let P , Q be the two given 
positive integers, and suppose that k is the number of digits in the larger of 
P and Q. From a finite sequence of numbers, each of not more than k 
digits, according to the rules: 

k k 
(a) The first two numbers are 10 - P and Q. Of these 10 - P is 

an N number and Q is a Z number. 

347 



348 AN ADDITION ALGORITHM FOR GRE ATEST COMMON DIVISOR [Oct. 

(b) At each subsequent stage, the next number is the last N number 
plus the last Z number. Carries beyond k digits are ignored. 
If there is no such carry, this nextnumber is an N number; other-
wise, it is a Z number. 

(c) Stop when the next number would be zero. 
Than the last Z number is the g. c. d. of P and Q. 

We start with 10 - P and it might be argued that this requires a sub-
k traction. However, we can obtain 10 - P by applying the transformation 

0 - • 9, 1 -» 8, • ' • , 9 -» 0 to the digits of P , and then adding 1 to P. 
Hence, I am justified in saying that the algorithm only uses addition. 

It will be noticed that, as we move down the sequence, the N numbers 
begin with more and more nines, while the Z numbers begin with more and 
more zeros. Hence the designations N and Z. It is not necessary to eval-
uate the next number in order to determine whether it is an N or a Z. Sup-
pose the last N and Z numbers, respectively, are 

N W i ' " n i 
z V k - i - z i • 

Then we look for the largest integer j such that the sum n. + z . of the j 
digits is not 9. If there is no such j then the g. c.d. is 1. If there is such 
a j , and n. + z. < 9, we will get no carry and so, by the definition in rule 
(b), the next number will be an N number. Moreover, the addition is worked 
out step-by-step from the right, and so we can over-write the digits of the 
last N number, step-by-step, with the digits of the new N number. Simi-
larly, if n. + n, > 9, the next number is written over the last Z number. 
Hence, the space for the storage of the 2k digits of P and Q is sufficient 
for the complete calculation. Once we have n, = p and z, = 0 we can ignore 
these digits, and similarly for n, _-, z, - , etc. Thus the amount of work 
required in the additions steadily diminishes, and this is indicated by the 
dotted line in the example. The simplest flow diagram is also shown. 

I will now prove that the algorithm does produce the g. c. d. At each 
stage, we have N = 10k - p with 0 < p <10 k and Z = q with 0 < q < 10 
and we want the g.c.d. (p,q). By rule (a), this is certainly the case initially. 



1970] AN ADDITION ALGORITHM FOR GREATEST COMMON DIVISOR 349 

Case 1. Suppose N + Z would give no carry; that i s , 10 - p + q < 10 
- 1 or q < p. Then the next number will be 10* - (p - q). It will be an N 
number bigger than N but less than 10 . Since g. c.d. (p - q,q) = g. c.d. 
(p,q) the next stage will be of the correct form, 

Case 2. Suppose N + Z would give a carry; that i s , 10 - p + q> 10 
or q ^ p. This carry is ignored, so the next number will be (10 - p) + (q) 
- 10 = q - p , and 0 < q - p < q0 Again the next stage will be of the correct 
form. Since the size of Z foes down at each stage, we will reach a stage 
where the next Z would be zero; then p = q so that the g.c.d. (p,q) = q in 
Z. 

I have described all this in terms of arithmetic to the base 10* Clearly, 
the algorithm works with any base, and in particular in binary. Sometimes it 
is convenient to work to the base 10 but with several consecutive digits of the 
numbers in a computer word. With a little more programming effort, one can 
speed the process up as follows-

Let r and s be the largest integers such that n ^ 9 and z ^ 0 
r s 

respectively, and suppose that r > s„ Then, instead of replacing N by N + 
Z, it saves work to replace N by N + 10 " ~ Z. For this operation, we 
again only need addition with the appropriate shift* In most cases, we are in 
fact able to improve this to replacing N by N + 10 r " s Z , it is not difficult 
to distinguish the exceptional cases. As one would expect, the corresponding 
situation obtains if r < s. 

Read , k into k 
10K - P into N list 

Q into Z list 

Flow Diagram for g, c@ d. 


