AN APPLICATION OF THE LUCAS TRIANGLE

VERNER E. HOGGATT, JR.
San Jose State College, San Jose, California

1. INTRODUCTION

Consider the integer triangle whose entries are given by

$$
\begin{aligned}
& A_{j, 0}=1, \quad A_{j, j}=2, \quad j=1,2,3, \cdots ; \\
& A_{n+1, j}=A_{n, j}+A_{n, j-1} \quad(0<j<n, n \geq 1)
\end{aligned}
$$

The first few lines of the triangle are listed left-justified below:

1	2						
	1	3	2				
	1	4	5	2			
	1	5	9	7	2		
	1	6	14	16	9	2	
	1	7	20	30	25	11	2

One notes that the recurrence relation is the same as the one for Pascal's triangle. Apart from no $A_{0,0}$ term the array is really the sum of two Pascal triangles. The rising diagonal sums are the Lucas numbers, $L_{1}=1, L_{2}=3, L_{n+2}=L_{n+1}+L_{n^{\circ}}$ The $A_{0,0}=2$ would also add $L_{0}=2$ to the rising diagonal sum sequence. The triangular array is now the Lucas triangle of Mark Feinberg [1]. It is also closely related to a convolution triangle [3].

Consider the new array obtained in a simple way from our first array A by shifting the $j^{\text {th }}$ column down j places $(j=1,2,3, \cdots)$. The column on the left is the $0^{\text {th }}$ column.

B: | 1 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | | | |
| | 1 | 3 | | | |
| | 1 | 4 | 2 | | |
| | 1 | 5 | 5 | | |
| | 1 | 6 | 9 | 2 | |
| | 1 | 7 | 14 | 7 | |
| | 1 | 8 | 20 | 16 | 2 |
| 1 | \cdots | \cdots | \cdots | \cdots | |

The relationship is

$$
B_{i, j}=A_{i-j, j} \quad 0 \leq j \leq[i / 2]
$$

where $[\mathrm{x}$] is the greatest integer not exceeding x . The recurrence relation for $B_{i, j}$ is

$$
\begin{array}{ll}
B_{i, o}=1 & \text { for all } i \\
B_{i, j}=B_{i-1, j}+B_{i-2, j-1}, & 1 \leq j \leq[i / 2]
\end{array}
$$

along with other useful relations true for all j :

$$
\begin{aligned}
\mathrm{B}_{2 \mathrm{j}, \mathrm{j}} & =2 \\
\mathrm{~B}_{2 \mathrm{j}+1, \mathrm{j}} & =2 \mathrm{j}+1 \\
\mathrm{~B}_{2 \mathrm{j}+1, \mathrm{j}+1} & =0
\end{aligned}
$$

2. ANOTHER ARRAY

Harlan Umansky [2] laid out the following display of formulas for powers of Lucas numbers.
[Oct.

$$
\begin{aligned}
& L_{n}^{1}=L_{n} \\
& L_{n}^{2}=L_{2 n}+2(-1)^{n} \\
& L_{n}^{3}=L_{3 n}+3(-1)^{n} L_{n} \\
& \text { C: } \quad L_{n}^{4}=L_{4 n}+4(-1)^{n} L_{n}^{2}-2 \\
& L_{n}^{5}=L_{5 n}+5(-1)^{n_{n}} L_{n}^{3}-5 L_{n} \\
& L_{n}^{6}=L_{6 n}+6(-1)^{n} L_{n}^{4}-9 L_{n}^{2}+2(-1)^{n} \\
& L_{n}^{7}=L_{7 n}+7(-1)^{n_{n}} L_{n}^{5}-14 L_{n}^{3}+7(-1)^{n} L_{n} \\
& L_{n}^{8}=L_{8 n}+8(-1)^{n_{L}}{ }_{n}^{6}-20 L_{n}^{4}+16(-1)^{n^{n}}{ }_{n}^{2}-2
\end{aligned}
$$

The display given in [2] contains 7 missing pairs of parentheses. The above displayed form was suggested by Edgar Karst who, along with Brother Alfred Brousseau, noted the typing errors in [2]. Surely, we note that exclusive of signs, the coefficients in display C are precisely those of Array B. We shall prove the theorem:

Theorem 1.

$$
L_{n}^{m}=L_{m n}+\sum_{j=1}^{[m / 2]} c_{m, j}(-1)^{n j+j-1} L_{n}^{m-2 j}
$$

where

$$
\begin{aligned}
& C_{k, 0}=1 \\
& C_{m, j}=C_{m-1, j}+C_{m-2, j-1}, \quad 1 \leq j \leq[m / 2] \text { for } m \geq 2
\end{aligned}
$$

Proof. The proof shall proceed by induction. For all n, the theorem is true for $m=1$, the sum being empty. Assume, for $n \geq 1$,

$$
L_{n}^{k}=L_{n k}+\sum_{j=1}^{[k / 2]} C_{k, j}(-1)^{n j+j-1} L_{n}^{k-2 j}
$$

for $\mathrm{k}=1,2,3, \cdots, \mathrm{~m}$ along with

$$
\mathrm{C}_{\mathrm{k}, 0}=1, \quad \mathrm{C}_{2 \mathrm{k}, \mathrm{k}}=2, \quad \mathrm{C}_{2 \mathrm{k}+1, \mathrm{k}}=2 \mathrm{k}+1, \quad \text { and } \quad \mathrm{C}_{2 \mathrm{k}+1, \mathrm{k}+1}=0
$$

Therefore,

$$
L_{n}^{m}=L_{m n}+\sum_{j=1}^{[m / 2]} C_{m, j}(-1)^{n j+j-1} L_{n}^{m-2 j}
$$

and

$$
L_{n}^{m+1}=L_{n} L_{m n}+\sum_{j=1}^{[m / 2]} C_{m, j}(-1)^{n j+j-1} L_{n}^{m+1-2 j}
$$

But,

$$
L_{n} L_{m n}=L_{(m+1) n}+(-1)^{n_{1}} L_{(m-1) n}
$$

Thus,

$$
L_{n}^{m+1}=L_{(m+1) n}+(-1)^{n} L_{(m-1) n}+\sum_{j=1}^{[m / 2]} c_{m, j}(-1)^{n j+j-1} L_{n}^{m+1-2 j}
$$

Returning to the inductive assumption for $\mathrm{k}=\mathrm{m}-1$ yields

$$
\begin{aligned}
(-1)^{n} L_{(m-1) n} & =(-1)^{n} L_{n}^{m-1}+(-1)^{n+1} \sum_{j=1}^{[(m-1) / 2]} C_{m-1, j}^{(-1)^{n j+j-1}} L_{n}^{m-1-2 j} \\
& =(-1)^{n} L_{n}^{m-1}+\sum_{j=1}^{[(m-1) / 2]} C_{m-1, j}(-1)^{n(j+1)+(j+1)-1} L_{n}^{m-1-2 j}
\end{aligned}
$$

Now let $p=j+1$; then since $[(m-1) / 2]+1=[(m+1) / 2]$,

$$
(-1)^{n} L_{(m-1) n}=(-1)^{n} L_{n}^{m-1}+\sum_{p=2}^{[(m+1) / 2]} C_{m-1, p-1}(-1)^{n p+p-1} L_{n}^{m+1-2 p}
$$

Therefore,

$$
\begin{aligned}
L_{n}^{m+1}= & L_{(m+1) n}+\left\{(-1)^{n} L_{n}^{m-1}+\sum_{p=2}^{[(m+1) / 2]} C_{m-1, p-1}^{\left.(-1)^{n p+p-1} L_{n}^{m+1-2 p}\right\}}\right\} \\
& +\sum_{p=1}^{[m / 2]} C_{m, p}(-1)^{n p+p-1} L_{n}^{m+1-2 p} \\
= & L_{(m+1) n}+\sum_{p=1}^{[(m+1) / 2]}\left(C_{m, p}+C_{m-1, p-1}\right)(-1)^{n p+p-1} L_{n}^{m+1-2 p}
\end{aligned}
$$

We examine the possible extra term added to the second summation. If m is 2 k , then $[\mathrm{m} / 2]=[(\mathrm{m}+1) / 2]=\mathrm{k}$ and $\mathrm{C}_{2 \mathrm{k}, \mathrm{k}}=2$ and $\mathrm{C}_{2 \mathrm{k}-1, \mathrm{k}-1}=$ $2 \mathrm{k}-1$; thus, $\mathrm{C}_{2 \mathrm{k}+1, \mathrm{k}}=2 \mathrm{k}+1$. If $\mathrm{m}=2 \mathrm{k}+1$, then $[\mathrm{m} / 2]+1=$ $[(\mathrm{m}+1) / 2]=\mathrm{k}+1$ and the term $\mathrm{C}_{2 \mathrm{k}+1, \mathrm{k}+1}=0$ and $\mathrm{C}_{2 \mathrm{k}, \mathrm{k}}=2$; thus $\mathrm{C}_{2 \mathrm{k}+2, \mathrm{k}+1}=2$. Thus, if one defines
$\mathrm{C}_{\mathrm{k}-1,0}=1, \quad \mathrm{C}_{2 \mathrm{k}, \mathrm{k}}=2, \quad \mathrm{C}_{2 \mathrm{k}+1, \mathrm{k}}=2 \mathrm{k}+1, \quad \mathrm{C}_{2 \mathrm{k}+1, \mathrm{k}+1}=0$
for $k \geq 1$, and

$$
C_{m+1, p}=C_{m, p}+C_{m-1, p-1}, \quad 1 \leq p \leq\left[\frac{m+1}{2}\right], \quad m \geq 1
$$

then

$$
L_{n}^{m+1}=L_{(m+1) n}+\sum_{p=1}^{[(m+1) / 2]} C_{m+1, p}(-1)^{n p+p-1} L_{n}^{m+1-2 p}
$$

[Continued on p. 427.]

