6. Leonard Carlitz, "A Note on Fibonacci Numbers," Fibonacci Quarterly, Vol. 2, No. 1, February, 1964, pp. 15-28.
7. Verner E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton-Mifflin Mathematics Enrichment Series, Houghton-Mifflin, Boston, 1969, pp. 37-47.
8. W. A. Webb and E. A. Parberry, "Divisibility Properties of Fibonacci Polynomials," Fibonacci Quarterly, Vol. 7, No. 5, Dec. , 1969, pp. 457463.

[Continued from p. 406.]
the first two terms in the Fibonacci series. Who could resist the temptation to test the conjecture that $y / x=F_{n+1} / F_{n}$ ?

Now let $x=k F_{n}, y=k F_{n+1^{\circ}}$ Then,

$$
F_{n+1} / F_{n}=\left[k\left(F_{n}+F_{n+1}\right)-1\right] / k F_{n+1}
$$

so

$$
\mathrm{k}\left(\mathrm{~F}_{\mathrm{n}+1}^{2}-\mathrm{F}_{\mathrm{n}} \mathrm{~F}_{\mathrm{n}+2}\right)=-\mathrm{F}_{\mathrm{n}}
$$

but

$$
\mathrm{F}_{\mathrm{n}+1}^{2}-\mathrm{F}_{\mathrm{n}} \mathrm{~F}_{\mathrm{n}+2}=(-1)^{\mathrm{n}}
$$

hence n is odd, and we have $\mathrm{k}=\mathrm{F}_{\mathrm{n}}$. So,

$$
\begin{aligned}
& \mathrm{x}=\mathrm{F}_{2 \mathrm{~m}-1}^{2}=1,4,25,169, \text { etc. } \\
& \mathrm{y}=\mathrm{F}_{2 \mathrm{~m}-1} \mathrm{~F}_{2 \mathrm{~m}}=1,6,40,273, \text { etc }
\end{aligned}
$$

Hence, the children were 4 and 6 years old, Charlie 40, and Mary 25.


