THE SMALLEST NUMBER WITH DIVISORS A PRODUCT OF DISTINCT PRIMES

K. U. LU
California State College, Long Beach, California

1. INTRODUCTION

Let P_{i} denote the $i^{\text {th }}$ prime. This paper contains a proof that there is a number k such that for $\mathrm{k}>\mathrm{K}$, the number

$$
P_{1} P_{k+s^{-1}} P_{P_{2}}^{P_{k-1+s^{-1}}} \cdots P_{r}^{P_{k-r+1+s^{-1}}} \cdots P_{k}^{P_{1+s}}
$$

is the smallest number having

$$
P_{k+s} P_{k-1+s} \cdots P_{1+s}
$$

divisors, where $\mathrm{s} \geq 0,1 \leq \mathrm{r} \leq \mathrm{k}-1$.

2. LEMMAS

The following Lemma is repeatedly used in the proof of Lemma 2.
Lemma 1. There exist positive constants

$$
C=\frac{1}{9 \log 2}
$$

and d such that $\mathrm{cr} \log \mathrm{r}<\mathrm{P}_{\mathrm{r}}<\mathrm{dr} \log \mathrm{r}$. See [2p. 186].
Lemma 2. Let P_{i} denote the $i^{\text {th }}$ prime. There exists a number K large enough such that for $k>K$, we have

$$
\mathrm{P}_{\mathrm{r}}^{\mathrm{P}_{\mathrm{k}-\mathrm{r}+1}>\mathrm{P}_{\mathrm{k}}, ~}
$$

for $r=1,2, \cdots, k-1$.
Proof. For $r=1$, we do have

$$
\begin{gather*}
2^{\mathrm{P}_{\mathrm{k}}}>{ }^{\mathrm{P}_{\mathrm{k}}} \tag{1}\\
380
\end{gather*}
$$

for all k .
For $\mathrm{r}=2$, by Lemma 1, we have

$$
3^{P_{k-1}}>3^{c(k-1) \log (k-1)}
$$

There exists a k_{2} such that for $k>k_{2}$, we have

$$
\begin{equation*}
3^{\mathrm{P}_{\mathrm{k}-1}}>3^{\mathrm{c}(\mathrm{k}-1) \log (\mathrm{k}-1)}>\mathrm{dk} \log \mathrm{k} \tag{2}
\end{equation*}
$$

By Lemma 1 and Eq. (2), there is a constant k_{2} such that for $k>k_{2}$, we have
(3)

$$
3^{P_{k-1}}>P_{k}
$$

Similarly, for

$$
3 \leq \mathrm{r} \leq \frac{\mathrm{k}+1}{2}
$$

there is a constant k_{r} such that for $k>k_{r}$, we have

$$
\begin{equation*}
\mathrm{P}_{\mathrm{r}}^{\mathrm{P}_{\mathrm{k}-\mathrm{r}+1}}>\mathrm{P}_{\mathrm{k}} \tag{4}
\end{equation*}
$$

For $\mathrm{r}=\mathrm{k}-1$, by Lemma 1, we have

$$
\begin{aligned}
\mathrm{P}_{\mathrm{k}-1}^{2} & >(\mathrm{c}(\mathrm{k}-1) \log (\mathrm{k}-1))^{2} \\
& =\mathrm{c}^{2}(\mathrm{k}-1)^{2} \log ^{2}(\mathrm{k}-1)
\end{aligned}
$$

Hence, there is a constant $\mathrm{k}_{\mathrm{k}-1}$ such that for $\mathrm{k}>\mathrm{k}_{\mathrm{k}-1}$, we have

$$
\begin{equation*}
\mathrm{P}_{\mathrm{k}-1}^{2}>\mathrm{c}^{2}(\mathrm{k}-1)^{2} \log ^{2}(\mathrm{k}-1)>d \mathrm{k} \log \mathrm{k}>\mathrm{P}_{\mathrm{k}} \tag{5}
\end{equation*}
$$

Similarly, for

$$
\frac{\mathrm{k}+1}{2}<\mathrm{r} \leq \mathrm{k}-2
$$

there is a constant k_{r} such that

$$
\begin{aligned}
\mathrm{P}_{\mathrm{r}}^{\mathrm{P}_{\mathrm{k}-\mathrm{r}+1}} & >{\text { (cr } \log \mathrm{r})^{\mathrm{P}_{\mathrm{k}-\mathrm{r}+1}}} \\
& >\mathrm{dk} \log \mathrm{k} \\
& >\mathrm{P}_{\mathrm{k}}
\end{aligned}
$$

for $k>k_{r}$.
Let K be the maximum of $\mathrm{k}_{1}, \mathrm{k}_{2}, \cdots, \mathrm{k}_{\mathrm{k}-1^{-}}$. Then for $\mathrm{k}>\mathrm{K}$, we have

$$
P_{r}^{P_{k-r+1}}>P_{k} \quad(r=1,2, \cdots, k-1) \quad \text { Q.E.P. }
$$

Immediately following from Lemma 2, we have
Lemma 3. There is a constant K such that for $k>K$, we have

$$
\mathrm{P}_{\mathrm{r}}^{\mathrm{P}_{\mathrm{k}-\mathrm{r}+1+\mathrm{S}}}>\mathrm{P}_{\mathrm{k}}>\mathrm{P}_{\mathrm{i}}
$$

for $r=1,2, \cdots, k-1$, and $s \geq 0$, where $r<i \leq k-1$.
Since we know $P_{1}^{A B-1}>P_{1}^{A-1} P_{2}^{B-1}$ if $A>1, B>1$, and $P_{1}^{A}>P_{2}$ ([1, Lemma 1]), together with Lemma 3, we conclude the following theorem. Theorem. There is a constant K such that for $k>K$,

$$
P_{1} P_{k+s^{-1}} P_{P_{2}} P_{k-1+s^{-1}} \ldots P_{r}^{P_{k-r+1+s^{-1}}} \ldots P_{k}^{P_{1+s^{-1}}}
$$

is the smallest number such that it has $P_{k+s} P_{k-1+s} \cdots P_{k-r+1+s} \cdots P_{1+s}$ divisors.

REFERENCES

1. M. E. Grost, "The Smallest Number with Given Number of Divisors," American Mathematical Monthly, Vol. 75, No. 7, 1968.
2. Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, John Wiley and Sons, Inc. , Second Edition, 1966.
