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1. INTRODUCTION 

L e t P . denote the i p r i m e . This paper contains a proof that t he re 

i s a number k such that for k > K, the number 

P - 1 P - 1 P - 1 P -1 
„ k+s , / k - l + s - , / k - r + l + s T» 1+s 
p i ?2 • • ' p

r " " P k 

i s the sma l l e s t number having 

P P • • • P 
k+s k - l + s 1+s 

d i v i s o r s , where &£ 0, . 1 ^ r £ k - 1. 

2. LEMMAS 

The following L e m m a i s repeatedly used in the proof of L e m m a 2. 

L e m m a 1. T h e r e exis t posi t ive constants 

9 log 2 

and d such that c r log r < P < d r log r . See [2 p . 186] , 

L e m m a 2„ Let P . denote the i p r i m e . T h e r e ex i s t s a number K 

l a r g e enough such that for k > K, we have 

p
P k - r + l > 
r k 

for r = 1, 2 , • • • , k - 1. 

Proof. F o r r = 1, we do have 

(1) 2 K > P k 

380 



nnf 1Q70 T H E SMALLEST NUMBER WITH DIVISORS „QI 
UCL. ±aru A P R O D U C T O F D I S T I N C T PRIMES d S 1 

for a l l k. 
F o r r = 2 , by L e m m a 1, we have 

3
P k - l > 3 c (k- l ) log(k~l ) 

T h e r e ex i s t s a k2 such that for k > k2, we have 

(2) S ^ " 1 > a^-Dlogfc-l) > d k ^ g k 

By L e m m a 1 and Eq. (2), the re i s a constant k2 such that for k > k2s 

we have 

P, 1 
(3) 3 • > P, 

S imi la r ly , for 

k 

3 < r ^ k + 1 
2 

t h e r e i s a constant k such that for k > k , we have 
r r 

(4) P ^ " r + 1 > P k • 

F o r r = k - 1 , by L e m m a 1, we have 

P k - 1 > ( c ( k " 1 ) l o § ( k " 1 ) ) 2 

= c2(k - l ) 2 log2 OK - 1) . 

Hence , the re i s a constant k ^ such that for k > k ^ , we have 

(5) P 2 ._ 1 > c2(k - l ) 2 log2 Os - 1) > dk log k > P k . 

S imi la r ly , for 
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K^< r < k - 2 , 

there is a constant k such that 

p p 
^ k-r+1 > / , v k-r+1 
P'r > (cr log r) 

> dk log k 
> \ 

for k > k . r 
Let K be the maximum of kl9 k2, •" • , k, ^ Then for k > K, we have 

P 
P r > P k ( r = 1 » 2 » - * ° ^ - l ) Q . E . P . 

Immediately following from Lemma 2, we have 
Lemma 3. There is a constant K such that for k > K, we have 

p * k - r * U s > p k > P . , 

for r = l , 2, • ° • , k - 1, and s > 0, where r < i < k - 1. 
Since we know p f B " 1 > p f _ 1 p f "X if A > 1, B > 1, and PjA > P2 

([1, Lemma 1]), together with Lemma 3, we conclude the following theorem. 
Theorem. There Is a constant K such that for k > K, 

P -1 P -1 P -1 P -1 
•o k+s - V k - l + s , / k - r + l + s -D 1+s 
p i p 2 • • • p

r * " P k 

is the smallest number such that it has P k + s P k _ 1 + s * *' P k - r + l + s ' ' ' P l+s 
divisors. 
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