ONE-ONE CORRESPONDENCES BETWEEN THE SET N OF POSITIVE INTEGERS AND THE SETS N^{n} AND $\cup_{n \in N} N^{n}$
 EUGENE A. MAIER

University of Oregon, Eugene, Oregon

1. Let N be the set of positive integers and let N^{n} be the set of all n-tuples of positive integers. It is well known that there exist one-one correspondences between N^{n} and N for all N, and between $\underset{n \in N^{n}}{\cup} N^{n}$ and N. In this paper, we give examples of such functions.
2. Theorem 1. Define $f_{n}: N^{n} \rightarrow N$ by

$$
\begin{equation*}
\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}\right)=\binom{\mathrm{s}_{\mathrm{n}}}{\mathrm{n}}-\sum_{\mathrm{k}=1}^{\mathrm{n}-1}\binom{\mathrm{~s}_{\mathrm{k}}-1}{\mathrm{k}}, \tag{1}
\end{equation*}
$$

where

$$
s_{k}=\sum_{i=1}^{k} x_{i}
$$

for $\mathrm{k} \leq \mathrm{n}$ and the combinatorial symbol $\binom{\mathrm{m}}{\mathrm{k}}$ is defined to be 0 if $\mathrm{m}<\mathrm{k}$. Then f_{n} is a one-one correspondence.

Proof. We begin by defining a relation $<$ on N^{n} as follows:
Definition. $\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}\right)<\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ if and only if $s_{n}^{\prime}<$ s_{n}, or $\mathrm{s}_{\mathrm{n}}^{\prime}=\mathrm{s}_{\mathrm{n}}$ and there exists $\mathrm{k} \leq \mathrm{n}$ such that $\mathrm{x}_{\mathrm{k}}^{\prime}<\mathrm{x}_{\mathrm{k}}$ and $\mathrm{x}_{\mathrm{i}}^{\prime}=\mathrm{x}_{\mathrm{i}}$ for $\mathrm{k}<\mathrm{i} \leq \mathrm{n}$.

It is readily established that $<$ well-orders N^{n}. For $\alpha \in N^{n}$, let $\mathrm{M}_{\alpha}=\left\{\beta \in \mathrm{N}^{\mathrm{n}} \mid \beta \leq \alpha\right\}$ and let $\mathrm{f}_{\mathrm{n}}(\alpha)=\#\left(\mathrm{M}_{\alpha}\right)$ where $\#\left(\mathrm{M}_{\alpha}\right)$ is the number of elements in $M_{\alpha^{*}}$. Since M_{α} is a finite set, it follows that f_{n} is a oneone mapping from N^{n} onto N. We prove by induction on n that $f_{n}(\alpha)$ is given by (1).

If $\mathrm{n}=1$, we have $\mathrm{f}_{1}\left(\mathrm{x}_{1}\right)=\#\left\{\beta \in \mathrm{~N} \mid \beta \leq \mathrm{x}_{1}\right\}=\mathrm{x}_{1}$ which is the value (1) gives for $f_{1}\left(x_{1}\right)$. Assume (1) is valid for n. Observe that

$$
\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n+1}^{\prime}\right)=\left(x_{1}, x_{2}, \cdots, x_{n+1}\right)
$$

[Oct.
if and only if
(i)

$$
s_{n+1}^{\prime}<s_{n+1},
$$

or
(ii)

$$
s_{n+1}^{\prime}=s_{n+1} \text { and } x_{n+1}^{\prime}<x_{n+1}
$$

or
(iii) $s_{n+1}^{\prime}=s_{n+1}, x_{n+1}^{\prime}=x_{n+1}$ and $\left(x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right) \leq\left(x_{1}, \cdots, x_{n}\right)$.

Thus if

$$
\alpha=\left(x_{1}, x_{2}, \cdots, x_{n+1}\right)
$$

M_{α} may be expressed as the union of three disjoint sets A, B and C which consist of those elements of $\mathrm{N}^{\mathrm{n}+1}$ satisfying, respectively, conditions (i), (ii), and (iii). Thus,

$$
\mathrm{f}_{\mathrm{n}+1}(\alpha)=\#\left(\mathrm{M}_{\alpha}\right)=\#(\mathrm{~A})+\#(\mathrm{~B})+\#(\mathrm{C})
$$

We now compute $\#(A)+\#(B)+\#(C)$. We will have occasion to use the combinatorial identity,
(2)

$$
\sum_{j=t+1}^{t+r}\binom{j-1}{t}=\binom{t+r}{t+1}
$$

(which may be established by induction on r) and the fact that the number of n -tuples of positive integers which satisfy the equation $\mathrm{x}_{1}+\cdots+\mathrm{x}_{\mathrm{n}}=\mathrm{t}$ is

$$
\binom{\mathrm{t}-1}{\mathrm{n}-1}
$$

(Think of placing t objects in a row and placing dividers into $n-1$ of the $t-1$ spaces between the objects. Then x_{1} is the number of objects before the first divider, x_{2} is the number between the first and second dividers, etc.)

Note that $\beta=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \cdots, \mathrm{yn}_{\mathrm{n}}, 1\right)$ is an element of A if and only if $\mathrm{y}_{1}+\mathrm{y}_{2}+\cdots+\mathrm{y}_{\mathrm{n}+1}=\mathrm{j}$ where $\mathrm{n}+1 \leq \mathrm{j}<\mathrm{s}_{\mathrm{n}+1^{\circ}}$. Thus,

$$
\#(A)=\sum_{j=n+1}^{s_{n+1}^{-1}}\binom{j-1}{n}
$$

and hence, using (2),

$$
\#(A)=\binom{s_{n+1}-1}{n+1} .
$$

Now $\beta \in \mathrm{B}$ if and only if $1 \leq \mathrm{y}_{\mathrm{n}+1} \leq \mathrm{x}_{\mathrm{n}+1}-1$ and

$$
y_{1}+\cdots+y_{n+1}=x_{1}+\cdots+x_{n+1}=s_{n+1}
$$

Thus $\beta \in B$ if and only if $y_{1}+\cdots+y_{n}=j$ where $s_{n}+1 \leq j \leq s_{n+1}-1$. Hence,

$$
\#(B)=\sum_{j=s_{n}+1}^{s_{n+1}-1}\binom{j-1}{n-1}
$$

Using (2), we have

$$
\#(B)=\sum_{j=n}^{s_{n+1}-1}\binom{j-1}{n-1}-\sum_{j=n}^{s_{n}}\binom{j-1}{n-1}=\binom{s_{n+1}-1}{n}-\binom{s_{n}}{n}
$$

Finally, $\beta \in \mathrm{C}$ if and only if

$$
\begin{gathered}
\mathrm{y}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}+1} \\
\mathrm{y}_{1}+\cdots+\mathrm{y}_{\mathrm{n}}=\mathrm{s}_{\mathrm{n}},
\end{gathered}
$$

and

$$
\left(y_{1}, \cdots, y_{n}\right)=\left(x_{1}, \cdots, x_{n}\right) .
$$

The least such β is the $(\mathrm{n}+1)$-tuple

$$
\left(s_{n}-n+1,1,1, \cdots, 1, x_{n+1}\right)
$$

Thus $\beta \in \mathrm{C}$ if and only if

$$
\left(s_{n}-n+1,1, \cdots, 1\right)=\left(y_{1}, \cdots, y_{n}\right) \leftrightharpoons\left(x_{1}, \cdots, x_{n}\right)
$$

Hence,

$$
\#(\mathrm{C})=\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{n}}\right)-\mathrm{f}_{\mathrm{n}}\left(\mathrm{~s}_{\mathrm{n}}-\mathrm{n}+1,1, \cdots, 1\right)+1
$$

Therefore, using the induction hypothesis and (2), we have

$$
\begin{aligned}
\#(C) & =\left[\binom{s_{n}}{n}-\sum_{k-1}^{n-1}\binom{s_{k}-1}{k}\right]-\left[\binom{s_{n}}{n}-\sum_{k=1}^{n-1}\binom{s_{n}-n+k-1}{k}\right]+1 \\
& =-\sum_{k=1}^{n-1}\binom{s_{k}-1}{k}+\sum_{k=s_{n}-n}^{s_{n-1}}\binom{k-1}{s_{n}-n-1} \\
& =-\sum_{k=1}^{n}\binom{s_{k}-1}{k}+\binom{s_{n}-1}{n}+\binom{s_{n}-1}{s_{n}-n_{n}} .
\end{aligned}
$$

Thus, since

$$
\binom{s_{n+1}-1}{n+1}+\binom{s_{n+1}-1}{n}=\binom{s_{n+1}}{n+1}
$$

and

$$
\binom{s_{n}-1}{n}+\binom{s_{n}-1}{s_{n}-n}=\binom{s_{n}}{n}
$$

we have

$$
f_{n+1}\left(x_{1}, \cdots, x_{n+1}\right)=\#(A)+\#(B)+\#(C)=\binom{s_{n+1}}{n+1}-\sum_{k=1}^{n}\binom{s_{k}-1}{k}
$$

and the theorem is established.
3. Theorem 2. Define $g: ~ \bigcup_{n \in N} N^{n} \rightarrow N$ by

$$
g\left(x_{1}, \cdots, x_{n}\right)=2^{s_{n}-1}-1+\sum_{k=1}^{n}\binom{s_{n}-1}{k-1}-\sum_{k=1}^{n-1}\binom{s_{k}-1}{k}
$$

where

$$
s_{k}=\sum_{i=1}^{\mathrm{k}} \mathrm{x}_{\mathrm{i}}
$$

for $\mathrm{k} \leq \mathrm{n}$ and $\binom{\mathrm{m}}{\mathrm{k}}$ is defined to be 0 if $\mathrm{m}<\mathrm{k}$. Then g is a one-one correspondence.

Proof. Define a relation \triangleleft on $\bigcup_{n \in N} N^{n}$ as follows:
Definition. $\left(x_{1}^{1}, \cdots, x_{m}^{\prime}\right) \triangleleft\left(x_{1}, \cdots, x_{n}\right)$ if and only if
(i)

$$
\mathrm{s}_{\mathrm{m}}^{\prime}<\mathrm{s}_{\mathrm{n}}
$$

or
(ii)

$$
\mathrm{s}_{\mathrm{m}}^{\mathrm{p}}=\mathrm{s}_{\mathrm{n}} \text { and } \mathrm{m}<\mathrm{n}
$$

or
(iii)

$$
s_{m}^{\prime}=s_{n}, m=n \text { and }\left(x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right)<\left(x_{1}, \cdots, x_{n}\right)
$$

The relation \triangleleft well-orders ${ }_{n \in N} N^{n}$. For $\alpha \in \cup N^{n}$, let

$$
\mathbf{s}_{\alpha}=\left\{\beta \in \mathrm{N}^{\mathrm{n}} \mid \beta \unlhd \alpha\right\}
$$

and let $\mathrm{g}(\alpha)=\#\left(\mathrm{~S}_{\alpha}\right)$. Then g is a one-one mapping from $\bigcup_{n \in N} N^{n}$ onto N. We may express S_{α} as the union of three disjoint sets X, Y, and Z which consist of those elements of $\bigcup_{n \in N} N^{n}$ satisfying, respectively, conditions (i), (ii), and (iii) in the definition of \triangleleft.

Now $\beta=\left(\mathrm{y}_{1}, \cdots, \mathrm{y}_{\mathrm{m}}\right) \in \mathrm{X}$ if and only if $\mathrm{y}_{1}+\cdots+\mathrm{y}_{\mathrm{m}}=\mathrm{j}$ where $1 \leq j \leq s_{n}-1$. The number of elements in $\bigcup_{n \in N} N^{n}$ satisfying this equation for fixed j is

$$
\sum_{m \in N}\binom{j-1}{m-1}=\sum_{m=1}^{j}\binom{j-1}{m-1}=2^{j-1}
$$

Thus

$$
\#(X)=\sum_{j=1}^{s_{n}-1} 2^{j-1}=2^{s_{n}-1}-1
$$

We have $\beta \quad \mathrm{Y}$ if and only if $\mathrm{y}_{1}+\cdots+\mathrm{y}_{\mathrm{m}}=\mathrm{s}_{\mathrm{n}}$ where $\mathrm{m}<\mathrm{n}$. Thus

$$
\#(\mathrm{Y})=\sum_{m=1}^{n-1}\binom{s_{n}-1}{m-1} .
$$

Finally, $\beta \in \mathrm{Z}$ if and only if $\beta \in \mathrm{N}^{\mathrm{n}}$ and $\beta_{0}=\beta=\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{n}}\right)$ where β_{0} is the n-tuple $\left(\mathrm{s}_{\mathrm{n}}-\mathrm{n}+1,1,1, \cdots, 1\right)$. Thus, using the result of Theorem 1 and (2), we have

$$
\begin{aligned}
\#(Z) & =f_{n}\left(x_{1}, \cdots, x_{n}\right)-f_{n}\left(s_{n}-n+1,1, \cdots, 1\right)+1= \\
& =\binom{s_{n}}{n}-\sum_{k=1}^{n-1}\binom{s_{k}-1}{k}-\left[\binom{s_{n}}{n}-\sum_{k=1}^{n-1}\binom{s_{n}-n+k-1}{k}\right]+1 \\
& =-\sum_{k=1}^{n-1}\binom{s_{k}-1}{k}+\sum_{k=s_{n}-n}^{s_{n}-1}\binom{k-1}{s_{n}-n-1} \\
& =-\sum_{k=1}^{n-1}\binom{s_{k}-1}{k}+\binom{s_{n}-1}{s_{n}-n}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathrm{g}\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{n}}\right) & =\#(\mathrm{X})+\#(\mathrm{Y})+\#(\mathrm{Z})= \\
& =2^{\mathrm{s}_{\mathrm{n}}-1}-1+\sum_{\mathrm{k}=1}^{\mathrm{n}-1}\binom{\mathrm{~s}_{\mathrm{n}}-1}{\mathrm{k}-1}-\sum_{\mathrm{k}=1}^{\mathrm{n}-1}\binom{\mathrm{~s}_{\mathrm{k}}-1}{\mathrm{k}}+\binom{\mathrm{s}_{\mathrm{n}}-1}{\mathrm{~s}_{\mathrm{n}}-\mathrm{n}} \\
& =2^{\mathrm{s}_{\mathrm{n}}-1}-1+\sum_{\mathrm{k}=1}^{\mathrm{n}}\binom{\mathrm{~s}_{\mathrm{n}}-1}{\mathrm{k}-1}-\sum_{\mathrm{k}=1}^{\mathrm{n}-1}\binom{\mathrm{~s}_{\mathrm{k}}-1}{\mathrm{k}}
\end{aligned}
$$

SOME RESULTS IN TRIGONOMETRY

BROTHER L. RAPHAEL, F.S.C.

St. Mary's College, California
Graphs of the six circular functions in the first quadrant yield some particularly elegant results involving the Golden Section.

Let $\varphi^{2}+\varphi=1$, so that $\varphi=(\sqrt{5}-1) / 2=0.61803$ and notice that:
$\arccos \varphi=\arcsin \sqrt{1-\varphi^{2}}=\arcsin \sqrt{\varphi}=0.90459$
$\arcsin \varphi=\arccos \sqrt{1-\varphi^{2}}=\arccos \sqrt{\varphi}=0.66621$
Further, if $\tan x=\cos x$, then $\sin x=\cos ^{2} x$ and $\sin ^{2} x+\sin x=1$, that is, $x=\arcsin \varphi$ in which case $\tan \arcsin \varphi=\cos \arcsin \varphi=\cos \arccos \sqrt{\varphi}=\sqrt{\varphi}$ [Continued on p. 392.]

