$$
\mathrm{H}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}}, \text { where }\left\{\begin{array}{l}
\mathrm{n} \\
\mathrm{r}
\end{array}\right\}=\left[\begin{array}{l}
\mathrm{n} \\
\mathrm{r}
\end{array}\right] .
$$

Also solved by L. Carlitz, T. J. Cullen, Herta T. Freitag, John E. Homer, Jr., Peter A. Lindstrom, John W. Milsom, C. B. A. Peck, Klaus-Günther Recke, A. G. Shannon, Charles W. Trigg, Gregory Wulczyn, Michael Yoder, and the Proposer.

FOURTH POWERS IN TERMS OF FIBONOMIALS
B-177 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico.

Using the notation of $\mathrm{B}-176$, show that

$$
\mathrm{F}_{\mathrm{n}}^{4}=\left[\begin{array}{c}
\mathrm{n}+3 \\
4
\end{array}\right]-\mathrm{a}\left[\begin{array}{c}
n+2 \\
4
\end{array}\right]-a\left[\begin{array}{c}
n+1 \\
4
\end{array}\right]+\left[\begin{array}{l}
\mathrm{n} \\
4
\end{array}\right]
$$

for some integer a and find a .

Solution by R. M. Grassl, University of New Mexico, Albuquerque, New Mexico.
Letting $\mathrm{n}=2$, we find that a would have to be 4. Then letting $\mathrm{a}=$ 4, both sides satisfy the same fourth-order (i. e_{0}, five-term) recurrence relation. Hence it suffices to verify the formula for $n=0,1,2,3$ and it follows for all values of n by induction.

Also solved by L. Carlitz, T. J. Cullen, Herta T. Freitag, John E. Homer, Jr., C. B. A. Peck, Klaus-Günther Recke, Charles W. Trigg, Gregory Wulczyn, Michael Yoder, David Zeitlin, and the Proposer.
[Continued from p. 438.]

It is found, also, that the slope m of the distances z_{n} versus the Fibonacci Series f_{n} for each planet system is a power law function of the mass M and radius R of the planet in the form

$$
\mathrm{m} \propto M^{3} \mathrm{R}^{-7}
$$

