A NOTE ON FIBONACCI FUNCTIONS

W. R. SPICKERMAN

East Carolina University, Greenville, North Carolina

Recently, a number of authors [1, 2, 3] have considered Fibonacci functions - continuous functions possessing properties related to Fibonacci sequences. In this note, some Fibonacci functions are derived and their properties verified. The derivation is based on the following definition.

Definition: If f is an infinitely differentiable function and f satisfies the recursion relation:

$$
\begin{equation*}
f(x+2)=f(x)+f(x+1) \tag{1}
\end{equation*}
$$

then f is a Fibonacci function.
An immediate consequence of the definition is:
Theorem 1. If $f(x)$ is a Fibonacci function, then $f^{\prime}(x)$ and $\int f(x) d x$ are also.

The theorem is established by elementary calculus.

$$
\begin{aligned}
\mathrm{f}^{\prime}(\mathrm{x}+2) & =[\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}+1)]^{\prime}= \\
& =\mathrm{f}^{\prime}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x}+1) \\
\int \mathrm{f}(\mathrm{x}+2) \mathrm{dx} & =\int[\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}+1)] \mathrm{dx}= \\
& =\int \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int \mathrm{f}(\mathrm{x}+1) \mathrm{dx}
\end{aligned}
$$

Theorem 2. If $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are Fibonacci functions, then their sum is also.

Proof. Let $F(x)=f(x)+g(x)$. Then

$$
\begin{aligned}
F(x+2)=f(x+2)+g(x+2) & =[f(x+1)+g(x+1)]+[f(x)+g(x)]= \\
& =F(x+1)+F(x) .
\end{aligned}
$$

Theorem 3. If $\mathrm{f}(\mathrm{x})$ is a Fibonacci function and c is a real constant, then $\mathrm{cf}(\mathrm{x})$ is a Fibonacci function.

Proof. Let $F(x)=c f(x)$. Then

$$
F(x+2)=c f(x+2)=c[f(x+1)+f(x)]=c f(x+1)+c f(x)=
$$

$$
=F(x+1)+F(x)
$$

Since the function $e^{(p+k \pi i) x}$ where p is a real constant, k an integer, and $i=\sqrt{-1}$ is real for integer values of x, we look for Fibonacci functions of the form $y=e^{d x}$ where d is complex. Substitution into the recursion relation (1) yields

$$
\begin{equation*}
e^{d(x+2)}-e^{d(x+1)}-e^{d x}=0 \tag{3}
\end{equation*}
$$

or,

$$
\begin{equation*}
e^{d x}\left(d^{2 d}-e^{d}-1\right)=0 \tag{4}
\end{equation*}
$$

Since 0 is omitted by the first factor of (4),

$$
\begin{equation*}
e^{2 d}-e^{d}-1=0 \tag{5}
\end{equation*}
$$

Solving (5) for e^{d} :

$$
e^{d_{1}}=\frac{1}{2}(1+\sqrt{5})=\alpha
$$

and

$$
e^{d_{2}}=\frac{1}{2}(1-\sqrt{5})=\beta
$$

Let $d_{1}=a_{1}+b_{1} i$, then

$$
a^{a_{1}}\left(\cos b_{1}+i \sin b_{1}\right)=\alpha
$$

Since $\alpha>0, a_{1}=1 n \alpha=0.48$ and $b_{1}=2 \mathrm{k} \pi$ for k an integer. Similarly, if $d_{2}=a_{2}+b_{2} i$, then

$$
e^{a_{2}}\left(\cos b_{2}+i \sin b_{2}\right)=\beta
$$

Since $\beta<0, \mathrm{a}_{2}=\ln |\beta|$ and $\mathrm{b}_{2}=(2 \mathrm{k}+\mathrm{i})$ for k an integer. Furthermore,

$$
1=\mid\left(e^{a_{1}} \cos 2 k\right)\left(e^{a_{2}} \cos (2 n+1)\left|=\left|e^{a_{1}}\right|\right| e^{a_{2}} \mid\right.
$$

and so $a_{2}=-1 n \alpha=-0.48$, or $a_{2}=-a_{1}$. Thus, the subscript on a is not necessary and two solutions of (1) are:

$$
\mathrm{y}(\mathrm{x})=\mathrm{e}^{\mathrm{ax}} \cos 2 \mathrm{k} \pi \mathrm{x}
$$

and

$$
\mathrm{y}(\mathrm{x})=\mathrm{e}^{-\mathrm{ax}} \cos (2 \mathrm{k}+1) \pi \mathrm{x}
$$

Applying Theorems 2 and 3, we have:

$$
\begin{equation*}
\mathrm{y}(\mathrm{x})=\mathrm{c}_{1} \mathrm{e}^{\mathrm{ax}} \cos 2 \mathrm{k} \pi \mathrm{x}+\mathrm{c}_{2} \mathrm{e}^{-\mathrm{ax}} \cos (2 \mathrm{n}+1) \pi \mathrm{x} \tag{6}
\end{equation*}
$$

where $\mathrm{a}=1 \mathrm{n} \alpha ; \mathrm{k}$ and n integers. Equation (6) may be written:

$$
\begin{equation*}
y(x)=c_{1} e^{(a+2 k \pi i) x}+c_{2} e^{(-a+(2 n+1) \pi) x} \tag{7}
\end{equation*}
$$

Some interesting and useful relations between e^{a} and e^{-a} can be derived by substituting the values of d_{1} and d_{2} into Eq. (5).

$$
\begin{gathered}
e^{(a+2 k \pi i) 2}-e^{a+2 k \pi i}-1=0 \\
e^{2 a} e^{4 k \pi i}-e^{a} e^{2 k \pi i}-1=0 \\
e^{2 a}-e^{a}-1=0
\end{gathered}
$$

or

$$
\begin{equation*}
e^{2 a}=1+e^{a} \tag{8}
\end{equation*}
$$

Also,

$$
\begin{gathered}
e^{(-a+(2 \mathrm{k}+1) \pi \mathrm{i}) 2}-e^{(-\mathrm{a}+(2 \mathrm{k}+1) \pi \mathrm{i})}-1=0 \\
\mathrm{e}^{-2 \mathrm{a}} \mathrm{e}^{2(2 \mathrm{k}+1) \pi \mathrm{i}}-\mathrm{e}^{-\mathrm{a}} \mathrm{e}^{2 \mathrm{k} \pi \mathrm{i}} \mathrm{e}^{\pi i}-1=0 \\
\mathrm{e}^{-2 \mathrm{a}}+\mathrm{e}^{-\mathrm{a}}-1-0
\end{gathered}
$$

or
(9)

$$
\mathrm{e}^{-2 \mathrm{a}}=1-\mathrm{e}^{-\mathrm{a}}
$$

Furthermore,

$$
\begin{equation*}
\mathrm{e}^{\mathrm{a}}+\mathrm{e}^{-\mathrm{a}}=|\alpha|+|\beta|=\sqrt{5} . \tag{10}
\end{equation*}
$$

The trigonometric identity $\cos \mathrm{k} \pi(\mathrm{x}+2)=\cos \mathrm{k} \pi \mathrm{x}=-\cos \mathrm{k} \pi(\mathrm{x}+1)$, relations (8) and (9), and some algebra verify that (6) is a solution to (1).

Since (6) is a differentiable function satisfying relation (1) in view of Theorem 1,

$$
\begin{equation*}
\mathrm{y}^{\prime}(\mathrm{x})=\left(\mathrm{c}_{1} \mathrm{e}^{a \mathrm{x}} \cos 2 \mathrm{k} \pi \mathrm{x}+\mathrm{c}_{2} \mathrm{e}^{-\mathrm{ax}} \cos (2 \mathrm{n}+1) \pi \mathrm{x}\right)^{\prime} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\int y(x) d x=\int\left[c_{1} e^{\mathrm{ax}} \cos 2 \mathrm{k} \pi \mathrm{x}+\mathrm{c}_{2} \mathrm{e}^{-\mathrm{ax}} \cos (2 \mathrm{n}+1 ; \pi \mathrm{x}] \mathrm{dx}\right. \tag{12}
\end{equation*}
$$

are also Fibonacci functions.
The values of c_{1} and c_{2} for which Eq. (6) assumes the Fibonacci numbers for integer x can be computed by applying the conditions $\mathrm{y}(0)=0$ and $y(1)=1$. That is,

$$
\begin{equation*}
c_{1}+c_{2}=0 \tag{13}
\end{equation*}
$$

$$
\mathrm{c}_{1} \mathrm{e}^{\mathrm{a}}-\mathrm{c}_{2} \mathrm{e}^{-\mathrm{a}}=1
$$

The solutions to the system (13) are $c_{1}=1 / \sqrt{5}$ and $c_{2}=-1 \sqrt{5}$. Thus, the Fibonacci functions that agree with the Fibonacci numbers for integer x are

$$
\mathrm{y}(\mathrm{x})=\left(\mathrm{e}^{\mathrm{ax}} \cos 2 \mathrm{k} \pi \mathrm{x}-\mathrm{e}^{-\mathrm{ax}} \cos (2 \mathrm{n}+1) \pi \mathrm{x}\right) / \sqrt{5}
$$

The function $f(x)=\left(a^{x}-b^{x} \cos \pi x\right) / \sqrt{5} \quad$ [2] is a special case of (14), where $\mathrm{k}=0, \mathrm{n}=0$, and a^{x} and b^{x} are not identified as exponentials base e.

The usual extension of the Fibonacci sequence to the negative integers satisfies the relation $F_{-n}=(-1)^{n+1} F_{n}$. For integer values of x, the Fibonacci functions (14) have the same property.

Since

$$
\cos 2 \mathrm{kn} \pi=(-1)^{2 \mathrm{kn}}=1
$$

and

$$
\cos (2 \mathrm{kn}+\mathrm{n}) \pi=(-1)^{2 \mathrm{kn}}(-1)^{\mathrm{n}}=(-1)^{\mathrm{n}}
$$

we have

$$
\begin{aligned}
\sqrt{5} y(-n)=e^{-a n} \cos 2 k \pi(-n) & -e^{a n} \cos (2 n+1) \pi(-n)= \\
e^{-a n}-(-1)^{n} e^{a n} & =(-1)^{n+1}\left(e^{a n}-e^{-a n}\right)= \\
& =(-1)^{n+1} y(n) \sqrt{5}
\end{aligned}
$$

REFERENCES

1. M. Elmore, "Fibonacci Functions," Fibonacci Quarterly, 5 (1967), pp. 371-382.
2. F. Parker, "A Fibonacci Function," Fibonacci Quarterly, 6 (1968), pp. 1-2.
3. A. Scott, "Continuous Extensions of Fibonacci Identities," Fibonacci Quarterly, 6 (1968), pp. 245-250.
