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HI 

It is well known that if 2, = 1 B, (x) is bounded independently of m and 
x (say for all x in an interval I) and A, tends to zero mono tonic ally as 
k —» oo, then 2, 1A, B, (x) is uniformly convergent on I. This follows from 
a finite identity first used systematically by Abel, namely, 

n n-1 

W E \ B k = s n A n " s m - l A m - l + E s k ( A k " W ' 
k~m k=m-l 

where 

\ 

k 
"LB, 

i=l 

The purpose of this paper is to show that an infinite sequence of finite 
identities involving summations (of which (1) is the simplest example) can be 
deduced from the so-called MP. Hall commutator collecting process" which 
is fundamental in the theory of finitely generated nilpotent groups. 

Let G be the free, group on two generators a and b , {G } its lower 
central series (Gt = G, G n + 1 = [G n ,G]) , and {^n} the corresponding 
natural homomorphisms, so <£>. : G -*G/G . P. HalPs commutator collect-
ing process yields for every g E G an integer r = r(n) such that 

(2) 0n(g) = c ? 1 ^ 2 . . . c r
r G n , 
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where the c. E G are the so-called basic commutators (c* = a, c2 = b , 
c3 = [b , a ] , c4 = [ b , a , a ] , c5 = [ b , a , b ] , c6 = [ b , a , a , a ] , c7 = [ b , a , a , b ] , 
c8 = [b , a ,b ,b ] , • • • ) and the e. are integers uniquely determined by g and 
n. A detailed explanation of these concepts can be found in Chapter 5 of 
Magnus, Kar rass , and Solitar, Combinatorial Group Theory, Interscience 
Publishers, John Wiley and Sons, Inc. , New York, 1966. 

Now let * denote the operator on G which turns words backwards; 
e . g . , (a3b2ab)* = bab2a3. If <p(g) is given by (2), define 0*(g) by 

(3) tf£(g) = c? c*2 . . . c* r G n . 

Since g* can be formed by making the substitutions a —• a~ and b —» b~ 
in g" , it follows that 

(4) 0£(g) = 0n(g*) . 

Similarly, let T denote the operator on G which interchanges a and b; 
e . g . , (a3b2ab)T = b3a2ba. Then, 

(5) 0^(g) = 0n(gf) . 

Equations (4) and (5) provide infinitely many generalizations of (1). 
To obtain specific identities from (4) and (5) write g in the form 

(6) g = b a b • • • b ^ m 

where the x. are integers. Then g* is obtained from (6) by replacing x. 
with xQ ., and gT is similarly obtained by replacing m with m + 1 and 
x. with y., where yA = yn , 0 = 0 and y. = x. - for 1 £ i <> 2m + 1. 

l Ji J 0 J 2m+2 Ji l - l 
Tables I, II, and III of the appendix show how to calculate 05(g) from g, 
where g has the form (6), and 4>$g)9 0|j(g) from </>5(g), where 05(g) has 
the form (2). 
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Example 1. By equating the exponents of c3 in (5) s we obtain 

r m - l \ / m \ m - l / m - 1 

LX2iJlEX2iJ- Hi E X — **« 
(7) 

I £-j ~2j+lJ^2i 
i=0 / \ i=0 / i=0 \ j=4 

m+1 / m + l \ m / m 

= E d 2 y2j+i) = Z ( S 
i=0 \ j=i / i = l \ H 

By letting 

t 
u(t) = Y* 

i=0 
X2i 

and 

t 
v(t) = E x2i+l • 

i=0 

this may be expressed in the more familiar form 

m-1 

u(m - l)v(m - 1) - £ ) v ( i " 1 ) ( u ( i ) " u ( i " 1 ) ) = 

i=0 
(8) 

m 
= Xu(i"1)(v(i"1}"v(i"2)) f 

i=l 

which is the discrete analogue of the familiar uv - Jvdu = /udv . Equation 
(1) is easily verified from (8). 

Example 2. By equating the exponents of c5 in (4), we obtain 
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m / i - 1 X / i - 1 

E X 2 i (E x 2 j | (E X 2j + l 
i=l \j=0 /\j=0 

m-1 / m 

1=0 \j=i+l / \ j=i 

/m-1 \ / m 

i ( 2 * 

m / v /m-1 

r > (E 
i=0 V ' \ j=i 

X 2 j + 1 1 + 

m 

2J+1, 

21 Z ^ 2J+1II Z v ~2j 
j=0 / \ j = 0 / i=0 

m - 1 

EX2j) "SX2i(Z X2j+i 

m 

J \ j = o 

It follows by equating the coefficients of Xj in (9) that 

m i - 1 
(10) X2il E X 2 j 

1=1 V j=0 1 = 0 N / \ j = 0 / \ j = 0 
^2j 

Equation (10) i s a lso d i rec t ly obvious, and can be considered a d i s c r e t e a n a -
logue of 

/ u d u = ^- u2 . 

I t i s c l e a r that these ident i t ies provide new t e s t s for the convergence of 

infinite s e r i e s , but the author has ne i the r been able to use them to decide 

the convergence of any s e r i e s whose convergence i s p re sen t ly unknown, no r 

to show that these ident i t ies always have in tegral analogues . 

APPENDIX 

F o r a g given in the form (6), Table 1 gives the exponents e. of (2) 

for r(5) = 8, and Tables 2 and 3 give the exponents f. and h. of $%(g) 

and ^ ( g ) , respectively* If p i s a complicated expres s ion , (p) shall d e -
note the binomial coefficient ( „ ) • The author h a s extended these tables 
(by hand) to r(6) = 14. The formula for e j 4 i s an unwieldy sum of five 
t e r m s , one of which i s 
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m-1 / m \ 

SwJ E U • 
i=0 \ j= i+ l / 

where 

m-1 
p = x2i E X2j+1 

ei 

e3 

m-1 
= E X2i+1 

i=0 

m-1 /m-1 
= E x2i( E x2j+l 

i=0 V j=i 

TABLE 1 
HI 

e2 = E X2i 2i 
i=0 

m=l /m-1 
V 2 j + l | 2 

e * = E x2i E x< 
i=0 \ j=i 

m-1 / m - 1 \ / m 
es = E x2i( E x2j+i)( E 

i=0 \ H / \ j=i+l i=0 X \ j=i 
2J+1H Lu x2j ! + ^ V 2 M Z ^ ~2j+l 

m-1 / m - 1 
ee = E x2i(Ex2 j + lJ 3 

i=0 \ j=L 

m-1 . . / m - 1 \ m-1 / m - 1 \ / m 
e? = E ffj l E x2j+i)2

 + E J E x2j+i)J E x
2j 

i=0 X ' \ j=i / i=0 \ j=i / \j=L+l 

m - 1 / \ / m - 1 \ m-1 x / m - 1 

= Eff)(E,1+1)+E(f)(E 
m 

x„..,|| 2 x„ e » B M 3 ) l ^ X2j+1 r ^ ^ A ^ X2j+lji Z . x2j 

m-1 / m - 1 \ / m 

+ E X 2 i E x 2 j + i E x2 j / 2 
i = 0 \ J = L / \ j = i + l 

[Continued on p. 405. ] 


