ON DETERMINANTS WHOSE ELEMENTS ARE PRODUCTS OF RECURSIVE SEQUENCES

DAVID ZEITLIN
Minneapolis, Minnesota

1. INTRODUCTION

Let $W_{0}, W_{1}, p \neq 0$, and $q \neq 0$ be arbitrary real numbers, and define
(1.1) $\quad W_{n+2}=p W_{n+1}-q W_{n}, \quad p^{2}-4 q \neq 0, \quad(n=0,1, \cdots)$,

$$
\begin{equation*}
\mathrm{U}_{\mathrm{n}}=\left(\mathrm{A}^{\mathrm{n}}-\mathrm{B}^{\mathrm{n}}\right) /(\mathrm{A}-\mathrm{B}) \quad(\mathrm{n}=0,1, \cdots) \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
V_{n}=A^{n}+B^{n}, \quad V_{-n}=V_{n} / q^{n} \tag{1.3}
\end{equation*}
$$

$$
(\mathrm{n}=0,1, \cdots)
$$

where $A \neq B$ are roots of $y^{2}-p y+q=0$. Carlitz $[1, p .132$ (6)], using a well-known result for linear transformations of a quadratic form, has given a closed form for the class of determinants

$$
\begin{equation*}
\left|W_{n+r+s}^{k}\right| \quad(r, s=0,1, \cdots, k) \tag{1.4}
\end{equation*}
$$

As a first generalization of (1.4), we will show that for $m=1,2, \cdots$, and $n_{0}=0,1, \cdots$,

$$
\begin{align*}
& \left|W_{m(n+r+s)+n_{0}}^{k}\right| \quad(r, s=0,1, \cdots, k) \tag{1.5}\\
& =(-1)^{(\mathrm{k}+1)(\mathrm{k} / 2)} \cdot \mathrm{q}^{\left(\mathrm{mn}+\mathrm{n}_{0}\right)(\mathrm{k}+1)(\mathrm{k} / 2)+(\mathrm{mk} / 3)\left(\mathrm{k}^{2}-1\right)} \cdot \prod_{\mathrm{j}=0}^{\mathrm{k}}\binom{\mathrm{k}}{\mathrm{j}} \\
& \cdot\left(W_{1}^{2}-p W_{0} W_{1}+q W_{0}^{2}\right)^{(k+1) k / 2} \cdot \prod_{i=1}^{k} U_{m i}^{2(k+1-i)} .
\end{align*}
$$

For $m=1$ and $n_{0}=0$, Eq. (1.5) gives the main result (1.4) of [1]. As in [1] , our proof of (1.5) will require the following known result for quadratic forms (e. g., see [2, pp. 127-128]):

Lemma 1. Let a quadratic form

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i j} x_{i} x_{j} \quad\left(\alpha_{i j}=\alpha_{j i}\right)
$$

be transformed by a linear transformation

$$
x_{i}=\sum_{k=1}^{n} \beta_{i k} Y_{k} \quad(i=1,2, \cdots, n)
$$

to

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} Y_{i} Y_{j} \quad\left(c_{i j}=c_{j i}\right)
$$

Then

$$
\begin{equation*}
\left|c_{i j}\right|=\left|\alpha_{i j}\right| \cdot\left|\beta_{i j}\right| \quad(i, j=1,2, \cdots, n) \tag{1.6}
\end{equation*}
$$

2. STATEMENT OF THEOREIM 1

We note that (1.5) is a special case of Theorem 1.
Theorem 1. Let $W_{n}, n=0,1, \cdots$, satisfy (1.1), where $A \neq B \neq 0$ are the roots of $y^{2}-p y+q=0$. Let $m, k=1,2, \cdots$, and define

$$
P_{n}=\prod_{i=1}^{k} W_{m n+n_{i}} \quad(n=0,1, \cdots)
$$ where $n_{i}, i=1,2, \cdots, k$, are arbitrary integers or zero. Let $N_{k}=n_{1}$ $+n_{2}+\cdots+n_{k}$. Then, with $u+1$ as the row index and $v+1$ as the column index, we have

$$
\cdot\left(W_{1}^{2}-\mathrm{pW}_{0} \mathrm{~W}_{1}+\mathrm{qW}_{0}^{2}\right)^{(\mathrm{k}+1) \mathrm{k} / 2} \prod_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{U}_{\mathrm{mi}}^{2(\mathrm{k}+1-\mathrm{i})}
$$

with $\mathrm{C}_{0}=\mathrm{A}^{\mathrm{N}_{\mathrm{k}}}$,
(2.3)

$$
C_{r}=\sum_{j=1}^{\binom{k}{r}} A^{N_{k}-S(j, r)}{ }_{B^{S}(j, r)} \quad(r=1,2, \cdots, k)
$$

$$
S(j, r)=n_{1}^{(j)}+n_{2}^{(j)}+n_{3}^{(j)}+\cdots+n_{r}^{(j)} \quad\left(j=1,2, \cdots,\binom{k}{r}\right)
$$

where, for each $j, S(j, r)$, as the sum of r integers, $n_{i}^{(j)}, i=1,2, \ldots$, r, represents one of the $\binom{k}{r}$ combinations obtained by choosing r numbers from the k numbers, $n_{1}, n_{2}, n_{3}, \cdots, n_{k}$.

Remarks. If $n_{i} \equiv n_{0}, i=1,2, \cdots, k$, then $N_{k}=k n_{0}, S(j, r)=r n_{0}$, and

$$
\mathrm{C}_{\mathrm{r}}=\binom{\mathrm{k}}{\mathrm{r}} \mathrm{~A}^{(\mathrm{k}-\mathrm{r}) \mathrm{n}_{0}} \mathrm{~B}^{\mathrm{rn}}
$$

Since $A B=q$, we have

$$
\prod_{r=0}^{k} C_{r}=q^{n_{0}(k+1) k / 2} \cdot \prod_{j=0}^{k}\binom{k}{j},
$$

and thus (2.2) gives (1.5) as a special case.

$$
\text { For the case } n_{1}=n_{2}=\cdots=n_{k-1}=d \text { and } n_{k} \neq d_{\bullet} \text { it is readily seen }
$$ that

$$
C_{r}=\binom{k-1}{r-1} A^{(k-r) d_{B}(r-1) d+n_{k}}+\binom{k-1}{r} A^{(k-r-1) d+n_{k_{B}} r d}
$$

As a footnote to Theorem 1, we have

$$
\text { Lemma 2. For } \mathrm{r}<\mathrm{k}-\mathrm{r}, \mathrm{r}=0,1, \cdots \text {, we have }
$$

(2.5) $\quad C_{r} C_{k-r}=\binom{k}{r} q^{N_{k}}+\binom{k}{r} \sum_{j=2} \sum_{i=1} q^{S(i, r)-S(j, r)+N_{k}} \cdot V_{2 S(j, r)-2 S(i, r)}$.

Thus,

where
(2.8) $\quad C_{k / 2}=\sum_{j=1}^{\binom{k-1}{k / 2}} q^{S(j, k / 2)} \cdot V_{N_{k}}-2 S(j, k / 2) \quad(k=2,4,6, \cdots)$.

Proof of Lemma 2. Since $A B=q$, we obtain from (2.3),

$$
C_{r}=\sum_{j=1}^{\binom{k}{r}} q^{S(j, r)} \cdot A^{N_{k}-2 S(j, r)}
$$

Noting that a choice of r numbers from k numbers leaves a complement choice of $k-r$ numbers, we have from (2.3)

$$
\begin{align*}
C_{k-r} & =\sum_{j=1}^{\binom{k}{r}} A^{N_{k}-S(j, k-r)} B^{S(j, k-r)}=\sum_{j=1}^{\binom{k}{r}} A^{S(j, r)} B_{k} N_{k}-S(j, r) \tag{2.9}\\
& \binom{k}{r} \\
& \sum_{i=1} q^{S(i, r)} \cdot B^{N_{k}-2 S(i, r)}
\end{align*}
$$

In forming the product $\mathrm{C}_{\mathrm{r}} \mathrm{C}_{\mathrm{k}-\mathrm{r}}$, we note that $\binom{\mathrm{k}}{\mathrm{r}}$ product pairs have equal i and j indices and the same value $q N_{k}$. For the cross products with $i \neq$ j, we combine those pairs having the same values of i and j, noting that

$$
\begin{aligned}
q^{S(j, r)} A^{N_{k}-2 S(j, r)} & \cdot q^{S(i, r)} B_{B}^{N_{k}-2 S(i, r)}+q q_{A}^{S(i, r)} N_{k}-2 S(i, r) \\
& =q q^{S(j, r)-S(j, r)+N_{k}} V_{2 S(j, r)-2 S(i, r)} N_{k}-2 S(j, r)
\end{aligned}
$$

Set $k=2 r$ in (2.3). Since a choice of r numbers from a set of $2 r$ numbers leaves another set of r numbers, we may again pair off related terms of the sum in (2.3). Since

$$
A^{N_{2} r^{-S(j, r)} S_{B}^{S(j, r)}}+A_{B}^{S(j, r)}{ }_{B}^{N_{2 r^{-S(j, r)}}}=q^{S(j, r)} V_{N} r_{2}-2 S(j, r)
$$

and

$$
\binom{2 \mathrm{r}}{\mathrm{r}}=2\binom{2 \mathrm{r}-1}{\mathrm{r}}
$$

we obtain (2.8) from (2.3) with $r=k / 2$.

3. PROOF OF THEOREM 1

Since $A \neq B$, the general solution to (1.1) is

$$
\mathrm{W}_{\mathrm{n}}=\mathrm{aA}^{\mathrm{n}}+\mathrm{bB}^{\mathrm{n}}, \quad \mathrm{n}=0,1, \cdots
$$

where a and b are arbitrary constants whose values satisfy $W_{0}=a+b$ and $W_{1}=a A+b B$. We readily find that $(B-A) a=W_{0} B-W_{1}$ and $(B-A) b$ $=W_{1}-A W_{0}$. Since $A+B=p$ and $A B=q$, we have that

$$
\begin{equation*}
(A-B)^{2} a b=-\left(W_{1}^{2}-p W_{0} W_{1}+q W_{0}^{2}\right) . \tag{3.1}
\end{equation*}
$$

We observe that
(3.2) $\quad P_{n}=\prod_{i=1}^{k} W_{m n+n_{i}}=\sum_{j=0}^{k} K_{j}\left(B^{m(k-j)} A^{m j}\right)^{n} \quad(n=0,1, \cdots)$,
where $K_{j}, j=0,1, \cdots, k$, denote arbitrary constants independent of n. The quadratic form

$$
\begin{align*}
Q & =\sum_{r, s=0}^{k} P_{n+r+s} Y_{r} Y_{S}=\sum_{r, s=0}^{k} Y_{r} Y_{S} \cdot \sum_{j=0}^{k} K_{j}\left(B^{m(k-j)} A^{m j}\right)^{n+r+s} \\
= & \sum_{j=0}^{k} K_{j}\left(B^{m(k-j)} A^{m j}\right)^{n} \sum_{r, s=0}^{k} A^{m j(r+s)} B^{m(k-j)(r+s)} Y_{r} Y_{s} \tag{3.3}\\
& \sum_{j} \\
= & \sum_{j=0}^{k} K_{j}\left(B^{m(k-j)} A^{m j}\right)^{n} x_{j}^{2},
\end{align*}
$$

$$
\begin{equation*}
x_{j}=\sum_{r=0}^{k}\left(A^{m j_{B}} m(k-j)\right)^{r} Y_{r} \quad(j=0,1, \cdots, k) \tag{3.4}
\end{equation*}
$$

Thus, by means of the linear transformation (3.4), we have reduced Q to a diagonal form. If M denotes the determinant of the linear transformation (3.4), it follows from Lemma 1 (see (1.6)), that
(3.5) $\left|P_{n+r+s}\right|=M^{2} \cdot \underset{j=0}{k} K_{j}\left(B^{m(k-j)} A^{m j}\right)^{n}=M^{2} \cdot q^{m n(k+1) k / 2} \cdot \prod_{j=0}^{k} K_{j}$,
where

$$
\begin{equation*}
M=\left|\left(A^{m j_{B}}{ }^{m(k-j)}\right)^{r}\right| \quad(j, r=0,1, \cdots, k) \tag{3.6}
\end{equation*}
$$

is a Vandermonde determinant.
We find now that

$$
\begin{aligned}
& \mathrm{k}-1 \mathrm{k} \\
& M=\underset{0 \leq j<r \leq k}{I I}\left(A^{m r} B^{m(k-r)}-A^{m j_{B} m(k-j)}\right)=\underset{j=0}{\prod=j+1} \prod^{m} A^{m j} B^{m(k-r)}(A-B) U_{m(r-j)} \\
& \mathrm{k}-1 \mathrm{k}-\mathrm{j} \\
& =(A-B)^{k(k+1) / 2} \cdot \prod_{j=0 \mathrm{~s}=1}^{\prod} A^{m j} B^{m(k-j-s)} U_{m s} \\
& j=0 \mathrm{~s}=1 \\
& =(A-B)^{k(k+1) / 2} \cdot \prod_{j=0}^{k-1} A^{m j(k-j)} B^{m(k-j)(k-j-1) / 2} \cdot \prod_{i=0}^{k-1} \prod_{s=1}^{\Pi} U_{m s} \\
& =(A-B)^{\mathrm{k}(\mathrm{k}+1) / 2} \cdot q^{\mathrm{mk}\left(\mathrm{k}^{2}-1\right) / 6} \cdot \prod_{i=1}^{\mathrm{k}} \mathrm{U}_{\mathrm{mi}}^{\mathrm{k}+1-\mathrm{i}} \cdot
\end{aligned}
$$

(3.7)

We proceed now to evaluate

$$
{\underset{j=0}{\mathrm{k}} \mathrm{~K}_{\mathrm{j}}, ~}_{\text {in }}
$$

of (3.5). From (3.2) we have

$$
\begin{equation*}
\prod_{i=1}^{k} W_{m n+n_{i}}=B^{m k n} \cdot \sum_{j=0}^{k} K_{j}\left((A / B)^{m n}\right)^{j} \tag{3.8}
\end{equation*}
$$

which is a polynomial in the variable $(A / B)^{m n}$. Since $W_{n}=a A^{n}+b B^{n}$, we have

$$
\mathrm{W}_{\mathrm{mn}+\mathrm{n}_{\mathrm{i}}}=\mathrm{B}^{\mathrm{mn}}\left(a A^{n_{i}}(\mathrm{~A} / \mathrm{B})^{\mathrm{mn}}+\mathrm{bB}^{\mathrm{n}_{\mathrm{i}}}\right)
$$

and thus

Recalling the definition of the elementary symmetric functions of the roots of a polynomial, we conclude, after comparing (3.8) and (3.9), that (see (2.3))

Using (3.1), we obtain from (3.10)

$$
\prod_{\mathrm{r}=0}^{\mathrm{k}} \mathrm{~K}_{\mathrm{r}}=(\mathrm{ab})^{\mathrm{k}(\mathrm{k}+1) / 2}{ }_{\mathrm{r}=0}^{\mathrm{k}} \mathrm{C}_{\mathrm{r}}
$$

$$
\begin{equation*}
=(-1)^{\mathrm{k}(\mathrm{k}+1) / 2}(\mathrm{~A}-\mathrm{B})^{-\mathrm{k}(\mathrm{k}+1)}\left(\mathrm{W}_{1}^{2}-\mathrm{pW} W_{0} W_{1}+q W_{0}^{2}\right)^{\mathrm{k}(\mathrm{k}+1) / 2} \prod_{\mathrm{r}=0}^{\mathrm{k}} \mathrm{C}_{\mathrm{r}} \tag{3.11}
\end{equation*}
$$

Thus, (3.5), with the use of (3.7) and (3.11), gives the desired result, (2.2).

4. THE CASE $p^{2}-4 q=0$

In [1], Carlitz gave an alternate proof of (1.4) for the case $p^{2}-4 q=0$. Although (1.4) was proved for the case $p^{2}-4 q \neq 0$, the two results are shown to be the same for the case $p^{2}-4 q=0$.

In the derivation of (2.2), we assumed that $p^{2}-4 q \neq 0$. It can be shown (by a repetition of the argument in [1]) that (2.2) is also valid for the case $p^{2}-4 q=0$, where now $U_{n}=n(p / 2)^{n-1}$, and $W_{n}=(a+b n)(p / 2)^{n}$, with $\mathrm{a}=\mathrm{W}_{0}$ and $\mathrm{pb}=2 \mathrm{~W}_{1}=\mathrm{pW}_{0}$. Since $\mathrm{A}=\mathrm{B}=\mathrm{p} / 2$, we obtain from (2.3) that

$$
\mathrm{C}_{\mathrm{r}}=\binom{\mathrm{k}}{\mathrm{r}}(\mathrm{p} / 2)^{\mathrm{N}_{\mathrm{k}}}
$$

Moreover, we have

and

$$
\prod_{\mathrm{r}=0}^{\mathrm{k}}\binom{\mathrm{k}^{\prime}}{\mathrm{r}}(\mathrm{r}!)^{2}=(\mathrm{k}!)^{\mathrm{k}+1}
$$

Thus, from Theorem 1, we obtain the simplified result
Theorem 2
$\prod_{i=1}^{k}\left(a+b n_{i}+b m(n+r+s)\right)(p / 2)^{m(n+r+s)+n_{i}} \mid \quad(r, s=0,1, \cdots, k)$
$(4.1)=(-1)^{(\mathrm{k}+1) \mathrm{k} / 2} \cdot(\mathrm{p} / 2)^{(\mathrm{k}+1)\left(\mathrm{k}(\mathrm{mn}+1)+(2 / 3) \mathrm{mk}(\mathrm{k}-1)+(\mathrm{k} / 3)(\mathrm{mk}+2 \mathrm{~m}-3)+\mathrm{N}_{\mathrm{k}}\right)}$

- $(\mathrm{bm})^{\mathrm{k}(\mathrm{k}+1)} \cdot\left(\mathrm{k}_{\mathrm{g}}\right)^{\mathrm{k}+1}$ 。

Remarks. If $m=1$ and $n_{i} \equiv 0, i=1,2, \cdots, k$, then $N_{k}=0$, and thus (4.1) contains, as a special case, the second (and the last) principal result, (7), of [1].

Additional simplifications of (4.1) are readily obtained.

REFERENCES

1. L. Carlitz, "Some Determinants Containing Powers of Fibonacci Numbers," Fibonacci Quarterly, 4 (1966), 129-134.
2. W. L. Ferrar, Algebra, Oxford University Press, London, 1941.
3. D. Zeitlin, "Power Identities for Sequences Defined by $W_{n+2}=d W_{n+1}-$ cW ${ }_{n}$," Fibonacci Quarterly, 3 (1965), 241-256.
