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we have
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for k 2 1 and the result readily follows.
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Denoting the nth term of the Fibonacci sequence 1, 1, 2, 3, 5, °°°,

by Fn’ where Fn+2 = Fn+1 + Fn’ it is well known that

2 _ n+1
Fn Fn an+1 1)
If odd prime p divides Fn—l’ then
2 _ n+1
Fn = (-1) (mod p) ,

so that (—1)n+1 is a quadratic residue modulo p. Clearly, for n = 2k, this

implies -1 is a quadratic residue modulo p, and accordingly, p = 1 (mod
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