and

1970]

$$(7-(24)^{\frac{1}{2}})(5-(24)^{\frac{1}{2}})^{6\text{W}+3} = (\text{K}_{\underline{4}}-\text{P}_{\underline{4}}(24)^{\frac{1}{2}})(5-(24)^{\frac{1}{2}})^{6\text{W}} = \text{K}_{6\text{W}+4}-\text{P}_{6\text{W}+4}(24)^{\frac{1}{2}} = \text{s},$$

so that $(r+s)/2 = K_{6w+4}$ and $(r-s)/2 = P_{6w+4}$, In the same way, we find $(r+s)/2 = K_{6w+6}$ and $(r-s)/2 = P_{6w+6}$. Then combining these results with (6) and (7.1), we conclude our application.

REFERENCES

- 1. R. T. Hansen, "Arithmetic of Pentagonal Numbers," Fibonacci Quarterly, Vol. 8, No. 2 (1970), pp. 83-87.
- 2. L. Euler, Comm. Arith. Coll., I, pp. 316-336.

[Continued from page 475.]

- 4). Hence, if odd prime p divides F_{2k-1} , then p is not of the form 4s + 3, thus proving Conjecture 2 of Dmitri Thoro.* The proof by Leonard Weinstein** came to my attention at a later time and is distinct from the above proof.
- *Dmitri Thoro, "Two Fibonacci Conjectures," <u>Fibonacci Quarterly</u>, Oct. 1965, pp. 184-186.
- ** Leonard Weinstein, "Letter to the Editor," Fibonacci Quarterly, Feb. 1966, p. 88.

ERRATA

Please make the following corrections in 'Some Results on Fibonacci Quaternions," Vol. 7, No. 2, pp. 201-210.

Page 201 — The first displayed equation on the page should read:

$$i^2 = j^2 = k^2 = -1$$
, $ij = -ji = k$; $jk = -kj = i$; $ki = -ik = j$.

Page 205 - Change the bracketed part of Eq. (27) to read:

$$[F_r^2T_0 + F_{2r}(Q_0 - 3k)]$$
.

Page 208 — Change the first terms of Eq. (74) to read:

$$T_{n+t}F_{n+r} = \cdots$$