SOME SUMMATION FORMULAS"

L. CARLITZ
Duke University, Durham, North Carolina

1. Multiple summation formulas of a rather unusual kind can be ob-
tained in the following way. Let

(1.1) fx) = 1 - ax - ax% - -..

denote a series that converges for small x. Put

(1.2) ng) = 1+ byx + bgx? + +00

so that

(1.3) L ;‘f‘, b, xy" (b, = 1)
’ I - m* ¥ 0

m,n=0

Replacing y by x_ly, Eqg. (1.3) becomes

Ly 1 - 5 o ang
fxA - x Ty) m,n=0

Let k denote a fixed non-negative integer. Thenthat part of the right-

hand side of (1.4) that contains terms in ¥ g evidently

(1.5) | T by = e
m:

* Supported in part by NSF grant GP-7855.

28



Feb. 1971 SOME SUMMATION FORMULAS 29

On the other hand, since
1 -ax-ax?---)(1-x7ly) = (L+agy) -x7ly - (a; - ay)x - (8 ~agy)x? -+
It follows that

- +
[x7ly + (ag-a,y)% + (ay - agy)x® + -] 02

f(x)(1 - x~1y) ) n=0 (1 + atiy)n+1

(I' +8y+8Sy+--- )' yr(a1 - azy)si(az - a3y)S2- .

a+ agy) TSIt

J . X-r+s1+252+383+- ..

The part of the multiple summation on the right that contains terms in x_k

is obtained by taking
r = k + 8y + 28y + 383 + *

Comparison with (1.5) therefore yields the following identity:

(k + 28y + 35y + 483 + ---)!

0
Sz::(] SySgl---(k+sy+28 +3s3+--:)!
J

S{+289+38g+e - - s S
VARG @y - azy)~ay -agy)~?
251+3$2+- .

+
(1 + aly)k 1

1 - agy - ay* - -+

If we take
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(1.6) becomes

s s
ZOE (k+284 +3sy +45g+- -+ )! ‘ (z1-25) 1z, - 23)72 _ (1+z)k+1
o siisatr e ktsyt2sy +-0)! (1+Zi)2s1+3s2+- - T-2y-25-
If we now put
ZiT B T Y 4=123 ",
so that
Zj:llj+llj+1+llj+2+' (]_11253’ )’
we get
0 (k+2$1+3$2+453+"')! U11l.12
1.7)
Sj=0 Sitspleer ks +2sy+- )l (1+uy+uy +ug+ --)2s1+3$2+”'
(1 +uy +uy + ---)k+1
:1—u1-2u2-3u3—--- ’
where

Uy +uy +ug F oo

is absolutely convergent.

2. There are numerous special cases of the above identities that may

be noted. To begin with, we take

u3:u4:...:0

Changing the notation slightly, Eq. (1.7) gives
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d k + 2r + 3s)! utv® _ @1 A+u+ v)k+1
(2.1) 2 s (K+1 +28)! 2r+3s 1 "~ 2
r5to TS Y ltu+w —u - 2v

In particular, for v = 0, Eq. (2.1) reduces to

0 T _ (1 -+ u)k-l-l

k + 2r)! u
2.2) rz=:0 'k + 1) 1+ u)Zr 1-u

This is easily verified for k = 0. Indeed,

1
f: 2r u’ - )y __4u 2 _1+u
=\ @+ u)Zr 1 + u)? 1-u

in agreement with the special case of (2.2).

If we take all uj = 0 except up_l, we get
2.3) (k + ps u® _ @+ u)k+1 )
= s a + w)Ps 1-(p-1u

Summations like (2.3) are usually obtained by means of the Lagrange-Burmann

expansion formula. For example, it is proved [1, p. 126, No. 216] that

o o
(2.4) )> (0‘ R A ) ,
n=0 n 1 - Bw(d + Z)B-Fl
where
(2.5) w z

@+ 2P
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Making use of (2.5), the right member of (2.4) is seen to be equal to

a1 + Z)oz+1

1-B- 1z °

so that (2.4) is in agreement with 2.3).
1t should be observed that (2.3) has been proved above only for integral

k2 0, p=2 1. However, since

S k +ps u® _ - k +ps sw r{k+r+ps) r
{:0( ® )(1+u>k+‘°s+1 _ sgo( ; )u = (_1)( =)

S r=0

© n
n n-sfk +ps{fk +n-s+ps
2wty (s )( Lo )

it follows that (2.3) is equivalent to

s=0

n
2.6) S (~1)2S (k J;ps)(k + nn-_ss+ pS) = (- D"

Since (2.6) is a polynomial identity that holds for

it therefore holds for arbitrary k,p.

3. The proof that (2.3) holds for arbitrary k,p suggests that (1.7)also
holds for arbitrary k. We divide both sides of (1.7) by

(1+u +uz+---)kJrl .

Then since
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(1 +uy +uy + - )—k—Zsi_Ssz_. ee 1

r

0
Z})(—l)r(k T T+ 28 + 38y + '”)(u1 +uy 4 o)t
I‘:

(=]
_ Z K+1r+28;+ 359 +--- r! Ty Sy
= — Uy Uy

r=0 r Tyl Treleee
]

where r = r{+ 1y +..., it follows that the left member of (1.7) is equal to

0 0 (k + 28y + 3sy + )} )
Z (_1)r Z (k+r+2si+3s2+ ) r!
r.=0

s =0 St Splerr(k+sy+28) + -0)! r Tyl Tyl
J

Ty+Sy  Tp+Spte -
TR R A

Hence (1.7) is equivalent to

%2: ¥ kK + 25y + 38y + -+ <k+r+251+3s2+-'-)
r s =, S t

J ]
s! r!

TSl T

(3.1)
g + Dy + - )
St naymygng
nylng! -

where

1‘:1'1+1'2+"°s S=Si+S2+"'

Since (3.1)is a polynomial identity in k, it is valid for arbitrary k. There-
fore (1.7) is proved for arbitrary k.
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4. Another special case of (1.7) that is of some interest is obtained by

taking all uj = 0 except up_l and uq_l. We evidently get
(4.1) f: k+pr+ags \{r+s u’ vS _ (1 +u+v)K+1 (@ # p)
re=0\ **+8 r Jqsgsy)Prras  1-®-Du-(q-1v

As above, we can assert that (4.1) holds for all k, p, q. This can evidently
be extended in an obvious way, thus furnishing extensions of (2.3) involving
an arbitrary number of parameters.

We remark that (4.1) is equivalent to

Z (_1)i+j k+pr+gsYfk+pr+ags+i+j\fr+s\fi+]
rH=m r+s i+] r i
s+j=

(4.2)
= (m “1) ®-1"0q-",

m
which is itself a special case of (3.1).
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LETTER TO THE EDITOR

DAVID ZEITLIN
Minneapolis, Minnesota

In the note by W. R. Spickerman, "A Note on Fibonacci Functions,"
Fibonacci Quarterly, October, 1970, pp. 397-401, his Theorem 1, p. 397,
states that if f(x) is a Fibonacci function, i.e.,

(1) fx +2) = fx + 1) + f(x),

then ff(x)dx is also a Fibonaceci function. Since Jf(x)dx = h(x) + C, where
C is the arbitrary constant of integration, the above result assumes that
C = 0. Thus, a formulation of this result in terms of a definite integral
seems apropos.

[Continued on page 40. ]



