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The Fibonacci sequence is defined by the recurrence relation Fn +
Fn+1 = Fn+2 and the initial values Fy = Fy = 1.
The main result of this paper is

Theorem 4, For positive integers a, k, m and n such that k 2 m,

k
FaF FaF

a a
. divides mn ‘.
n * Fa

The proof of Theorem 4 will depend on all results preceding it in this
paper.

Let N be the set of natural numbers.

Definition 1. For any a,b in N the symbol fn(a,b) is defined for
each n in N as follows:

i) fi(a,b) = F

ii)

ab
fn+1(a’b) = fi(ayfn(a9b))

By induction, we observe that

fn(a,b) = Fa

F
a

Definition 2. For any a in N the symbol fn(a) is defined for each n
in N as follows:

1) fi(a) = Fa

ii) f 1@ = fi@,f (@) .
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By induction, we observe that fn(a) = fn(a,l).

If a,b arein N, we write a\b if and only if there exists some c in
N such that b = ac.

In the sequel we shall let a,b and c denote arbitrary elements of N.

Lemma 1. If blc, then fi(a,b)lfi(a,c) for all a in N.

Proof. 1If b‘c, then ab\ac for all a in N. From Hardy and Wright
[1s p. 148] we have, if n > 0, then Fn‘Frn for every r > 0. So in the
present notation fy(a,b) = Fab Fac = fya,c) forall a in N.

Lemma 2. If blfjl(a,c), then bfi(a,c)lfi(a,bc).

Proof. From Vinson [2] we have in the present notation,

For j =1, we have

bF
ac

b b-1
( 1) FacFac-lFl ’

For j > 1, we have, since b‘fi(a,c) = Fac’ that

O (bl ph-i
9 -~
bFac lFac ng ( j)FacF ac—le )

Thus bfy(a,c) = bF, [F, . = fi(a,bo).
Corollary 1. Tf blf . (@), then bf (@) |fi@,bf (a)).
Corollary 2. T blfya), then bfy(a)lfy(a,b).
Theorem 1. If blc, then fn(a,b)‘fn(a,c).
Proof. We use induction on n. The case n = 1 is true by Lemma 1,

Suppose fq(a,b) ’fq(a,c)., Then by Lemma 1 and Definition 1,

Bt @b) = £ @b @0 = fila,f @),
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Corollary 3. fn(a) fn(a,c).
Theorem 2. fm(a,fn(a,b)) = fm+n(a,b).

Proof. We use induction on m. The case m = 1 istrueby Definition
1. Suppose fq(a,fn(a,b)) = fq+n(a,b). Then by Definition 1,

fq+1(asfn(asb)) = f1(asfq(a,fn(a9b))) = fi(a’fq_i.n(a’b)) = f (a,b) N

g+1l+n

Corollary 4: fm(a,fn(a)) = fm+n(a)°
Lemma 3. fn(a)‘fm+n(a) for m=> 0.

Proof. The case m = 0 is clear. Suppose m > 0, Then by corol-
laries 3 and 4,

£ @[ 6.0 @) = £

(@ .

Lemma 4. fn(a)fn(a)leH(a).
Proof, We use induction on n. By corollary 2 and definition 2,

fi(a)lfi(a) implies
)@@, fE) = Gk ,
so the case n = 1 is true. Suppose fq(a)fq(a) fzq(a). Then by Lemma 1,

fyfas £ @ @)| fias fy (@) = £ 0@

2g+1
and by Lemma 1 again,

@) fi(a,fi(a,fq(a)fq(a)))\fi(a,fzqﬂ(a)) = L)@ -

Since fq +1(a)‘fq +1(aL) we have, by Corollary 1,

@ @)y, @) Erfaf 5 @F (@) -

fq+1 q+1

By Lemma 3, fq(a)l fq+l(a) so by Corollary 1, fq(a)fq+1(a) fl(aqu(a)fq(a))'
Therefore, by Lemma 1,
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fi(a, 5, @)1 1 @)|f1(a fr(a, £ @ @)

By Equations (1) and (2), the proof is complete.

Theorem 3. fm(a)fn(a)‘fm +Jﬂ(a).

Proof. It is sufficient to prove the theorem for all n 2 m. Let n =
m+r where r 2 0. We use induction on r., The case r = 0 is true by

Lemma 4. Suppose fm(a)fm_l_q(a)lf (a) for ¢ 2 0. Then, by Lemma 1,

2m-+q

@) =1

3) By(a, i (@F o (@))|Exfas (a) .

2m+q 2m+q+71

By Lemma 3, fm(a) fm+q+1(a), so by Corollary 1,
En @ @) i, @F @)

By Equation (3), the proof is complete.
; >
Lemma 5. fm+n(a)‘fm(a,tkn(a) ) for k > 0.
Proof. By Theorem 1, and Corollary 4, fn(a)lfl; (a) implies

@0 E) = L e 6,5E) .
Lemma 6. fn(a)fm(a,tkn(a) )'fm(a,tknﬂ(a)) for k =2 0.

Proof. The case k = 0 is true by Theorem 3 and Corollary 4. Sup-
pose k > 0. We now use induction on m. By Lemmas 3 and 5,

@]t @ fia,f)
for k > 0. So by Lemma 2,
@0 £ a)| e @) = G, @) .
So the case m = 1 is true. Suppose
+1
£, @ @, @[ @, 157 @)

for k > 0. Then by Lemma 1,
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+1
£ @)

@ fi(a,fn(a)fq(a,fkn@ )| frlas @) = f

g+l (@,

by Definition 1. By Lemmas 3 and 5,

(2)

£ (a) @E5@) = £t @, E6))

fq+ 1+n fq+1

for k > 0, which implies by Lemma 2 that

fn(a)f (a,fl;(a))

-~ fila, g, @)1 a, @) -

Lemma 7. fﬁ(a) fn(a,fkn_l(a)) for k > 0.

Proof. We use induction on k. The case k = 1 is clear. Suppose

So by Eq. (4), the pron is complete.

q q-1
£ (a)|f (2,7 (@)

for g > 0. Then

fg+1 @)

q-1 q
f (@i (a,f @) (a,f @)
for q -1 20, by Lemma 6.
-m
Theorem 4. fkn(a)|fmn(a,tlf1 (@)) for k >m> 0,
Proof. We use induction on m. The case m = 1 is true byLemma 7.
Suppose

E@|t @, 5 %)

qn

for k > g > 0. Then by Theorems 1 and 2,

O e )|t e L, 60 %w) = (a, 85710 a)),

f(q[+1)n

where k+12 g+1> 0. By Lemma 7,

£t 0,85 6)
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for k+1 > 0. Therefore, by Eq. (5),

Elgfr @)

(g+1)n @

for k+12 g+ 1> 0, and the proof is complete.
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[Continued from page 34. ] -

Theorem. Let f(x) be a Fibonacci function (see [1]). Then,
2) ifz ft)dt = A (A is a constant),
is a necessary and sufficient condition that
(3) gx) = ofx ftydt + A, g(0) = A,

also be a Fibonacci function.
Proof. Necessity., If g(x) is a Fibonacci function, then g(x +2) =
gk +1)+gx). For x =0, g2) = g(1) +g{0), which simplifies to (2).

Sufficiency. By integration, we have
X x X
0./‘ ft + 2)dt = 6/‘ £t + Ddt + S ft)dt .
0

Let t+2 =u and t+1 = v to obtain
x+2 x+1

X
4 21‘ fwdu = i/‘ fw)dv + Of f(t)dt .

Using (3), we obtain from (4), g +2) = g(x + 1) + g(x), by using (2).
L oo e J



