GREATEST COMMON DIVISORS IN ALTERED FIBONACCI SEQUENCES

UNDERWOOD DUDLEY and BESSIE TUCKER DePauw University, Greencastle, Indiana

Let the Fibonacci and Lucas sequence be defined as usual:

$$F_{n+1} = F_n + F_{n-1},$$
 $L_{n+1} = L_n + L_{n-1},$ $n = 2, 3, \cdots$
 $F_1 = F_2 = L_1 = 1,$ $L_2 = 3.$

It is well known that successive members of the Fibonacci sequence are relatively prime, but if we alter the sequence slightly by letting

$$G_n = F_n + (-1)^n, \qquad n = 1, 2, \cdots,$$

then we have very different behavior, as can be seen in the following table:

Inspection of the table shows that the first, third, fifth, \cdots entries in the $(G_n,\,G_{n+1})$ line are the second, fourth, sixth, \cdots Fibonacci numbers, and the second, fourth, sixth, \cdots entries are the third, fifth, seventh, \cdots Lucas numbers. It is the purpose of this note to prove this and some related results which are corollaries of Theorem 1 below.

(1)
$$F_{4n} + 1 = F_{2n-1}L_{2n+1}, \quad F_{4n} - 1 = F_{2n+1}L_{2n-1},$$
(2)
$$F_{4n+1} + 1 = F_{2n+1}L_{2n}, \quad F_{4n+1} - 1 = F_{2n}L_{2n+1},$$
(3)
$$F_{4n+2} + 1 = F_{2n+2}L_{2n}, \quad F_{4n+2} - 1 = F_{2n}L_{2n+2},$$
(4)
$$F_{4n+3} + 1 = F_{2n+1}L_{2n+2}, \quad F_{4n+3} - 1 = F_{2n+2}L_{2n+1},$$
(5)
$$F_{4n+3} + 1 = F_{2n+1}L_{2n+2}, \quad F_{4n+3} - 1 = F_{2n+2}L_{2n+1},$$
(6)
$$F_{4n+3} + 1 = F_{2n+1}L_{2n+2}, \quad F_{4n+3} - 1 = F_{2n+2}L_{2n+1},$$

Proof. From [1, p. 59], we have

(5)
$$F_{n+p} + F_{n-p} = F_n L_p, \quad p \text{ even },$$

(6)
$$F_{n+p} + F_{n-p} = F_p L_n, \quad p \text{ odd,}$$

(7)
$$F_{n+p} - F_{n-p} = F_p L_n, \quad p \text{ even },$$

(8)
$$F_{n+p} - F_{n-p} = F_n L_p, \quad p \text{ odd }.$$

Using (6), we get

$$F_{4n} + 1 = F_{4n} + F_2 = F_{(2n+1)+(2n-1)} + F_{(2n+1)-(2n-1)}$$

= $F_{2n-1}L_{2n+1}$.

Using (5), we get

$$F_{4n+1} + 1 = F_{4n+1} + F_1 = F_{(2n+1)+2n} + F_{(2n+1)-2n}$$

= $F_{2n+1}L_{2n}$.

Similar applications of (5)–(8) give the remaining six identities in (1)–(4).

Although it is not known whether or not the Fibonacci sequence contains infinitely many primes, Theorem 1 shows that the sequences $\{F_n+1\}$ and $\{F_n-1\}$ contain only finitely many primes.

Corollary 1. $F_n + 1$ is composite for $n \ge 4$ and $F_n - 1$ is composite for $n \ge 7$.

<u>Proof.</u> From Theorem 1, $F_8 \pm 1$, $F_9 \pm 1$, $F_{10} \pm 1$, \cdots are all composite because all of the factors on the right-hand sides of the equations in (1)-(4) are greater than one. Inspection of early values of F_n then completes the proof.

The property of greatest common divisors noted at the beginning of this note is proved in

Corollary 2.

$$(G_{4n}, G_{4n+1}) = L_{2n+1},$$
 $(G_{4n+2}, G_{4n+3}) = F_{2n+2},$ $(G_{4n+2}, G_{4n+3}) = F_{2n+2},$ $(G_{4n+2}, G_{4n+3}) = F_{2n+2},$

Proof. From Theorem 1, we have

The proofs of other equations are similar, the last one needing the fact that $(F_{2n},F_{2n+2})=1$, $n=1,2,\cdots$.

Using Theorem 1 in a similar way, we can prove

Corollary 3. If
$$H_n = F_n - (-1)^n$$
, $n = 1, 2, \dots$, then

$$(H_{4n}, H_{4n+1}) = F_{2n+1},$$
 $(H_{4n+2}, H_{4n+3}) = L_{2n+2},$ $(H_{4n+1}, H_{4n+3}) = F_{2n+1},$

 $n = 1, 2, \cdots$.

It would be natural to now consider the sequences $\{L_n + (-1)^n\}$ and $\{L_n - (-1)^n\}$, but different methods are needed.

The authors wish to thank the Editor for valuable suggestions.

 $\underline{\text{Note.}}$ The readers may wish to prove the additional ones listed below. Editor.

A.
$$(F_{4n+1} + 1, F_{4n+2} + 1) = L_{2n},$$
B.
$$(F_{4n+1} + 1, F_{4n+3} + 1) = F_{2n+1},$$
C.
$$(F_{4n+1} - 1, F_{4n+2} - 1) = F_{2n},$$
D.
$$(F_{4n+1} - 1, F_{4n+3} - 1) = L_{2n+1},$$
E.
$$(F_{4n-1} - 1, F_{4n+1} - 1) = F_{2n},$$
F.
$$(F_{4n-1} + 1, F_{4n+1} + 1) = L_{2n},$$
G.
$$(F_{4n+3} + 1, F_{4n} - 1) = F_{2n+1},$$
H.
$$(F_{4n+3} + 1, F_{4n+2} - 1) = F_{2n},$$
I.
$$(F_{4n+4} - 1, F_{4n+3} - 1) = L_{2n+1}.$$

REFERENCE

1. Verner E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin, Boston, 1969.