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Send all communications regarding Elementary Problems and Solutions 
to Professor A. P. Hillman, Dept. of Mathematics and Statistics, University 
of New Mexico, Albuquerque, New Mexico 87106. Each problem or solu-
tion should be submitted in legible form, preferably typed in double spacing, 
on a separate sheet or sheets, in the format used below. Solutions should 
be received within three months of the publication date. 

Contributors (in the United States) who desire acknowledgement of r e -
ceipt of their contributions are asked to enclose self-addressed stamped 
postcards. 

B-202 Proposed by Richard M. Grass/, University of New Mexico, Albuquerque, New Mexico. 

Let F j , F2 , *•• be the Fibonacci Sequence 1, 1, 2, 3, 5, 8, ••• with 
F n + 2 = F n + 1 + F n L e t 

G = F + F + F 
ri *4n-2 *4n r4n+2 

(i) Find a recursion formula for the sequence Gl9 G2, ' ' " . 
(ii) Show that each G is a multiple of 12. 

B-203 Proposed by Richard M. Grass!, University of New Mexico, Albuquerque, New Mexico. 

Show that F g _. + F g + F g + . is always a mult iple of 168. 

B-204 Proposed by V. E Hoggatt, Jr., San Jose State College, San Jose, California. 

Let Fi = F2 = 1 and F l 0 = F ^ + F . Show that 1 L n+2 n+1 n 

(i) Ftx + F3x2 + F5X3 + F7x4 + •-• = (x - x 2 ) / ( l - 3X + x2) 
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for |x | < (3 - N / 5 ) / 2 . 

(ii) 1 + 2x + 3x2 + 4x3 + • • • = 1/(1 - x)2 for | x | < 1. 

(iii) n F l + (n - 1)FS + (n - 2)F 5 + . ~ + 2 F ^ 2 + F ^ = F 2 n + 1 - 1. 

B-205 Proposed by V. £ Hoggatt, Jr., San Jose State College, San Jose, California. 

Show that 

(2n - l ) F i + (2n - 3)F3 + (2n - 5)F5 + • • • + 3 F 2 n _ 3 + F 2 n _ 1 = L ^ - 2 , 

where L i s the n Lucas number ( i . e . , L4 = 1, L2 = 3, L = L 
n+2 n+1 

+ L ). n 

B-206 Proposed by Guy A. Guillotte, Montreal, Quebec, Canada. 

Let a = (1 + N/5 )/2 and sum 

^ a F - + F n=l n+1 n 

B-207 Proposed by Guy A. Guillotte, Montreal, Quebec, Canada. 

Sum 

n=l F + N/5F , - + F _,_„ n n+1 n+2 

SOLUTIONS 

CONTRACTING INTO A SQUARE 

B-184 Proposed by Bruce W. King, Adirondack Community College, Glen Falls, New York. 

Let the sequence ( T } satisfy T „ = T - + T with a r b i t r a r y 

init ial conditions. Le t 
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g( n ) = TnTn+3 + 4 T n + l T n + 2 • 

Show the following: 
(i) g(n) = 0* + 1 + TlJ . 

(ii) If T is the Lucas number L , n n 

g(n) = 2 5 F | n + 3 . 

(See Fibonacci Quarterly, Problems H-101, October, 1968, and B-160, 
April, 1968.) 

Solution by Wray G. Brady, Slippery Rock State College, Slippery Rock, Pennsylvania. 

Substituting T = T . - T . and T lQ = T ^0 + T ,n into g(n) to n n+2 n+1 n+3 n+2 n+1 & 

we have 

g(n) = (Tn + 2 - T n + 1 )2(T n + 2 + Tn+1)2 + 4T^ + 1 . T^+ 2 

= K+Z ~ T ^ + l ) 2 + 4 T L - 1 T U 
= T n + 1 + 2 T U T n + 2 + Tn+2 

= < T U + T L + 2 ) 2 • 

Thus (i) is established. 
By substituting in terms of r and s in the usual way, (ii) is established. 

2 
} . . n+1 n + 1 2 , n+2 n+2,2 

n+1 n+2; 
/T2 _L T2 \2 r/ n + 1 , n+1,2 , , n+2 , n+2 A 
( Ln+l + Ln+2) = [ ( r + S > + ( r + S > 1 

r 2n+3, -1 , , , 2n+3, -1 , *,2 

= [ r (r + r) + s (s + s)J 

= [ ( r - s ) ( r 2 n + 3 - s 2 n + 3 ) ] 2 

= 2 5 F 2 n + 3 

where r and s are the roots of x2 - x - 1 = 0. 

Also solved by W. C. Barley, A. K. Gupta, John Kegel, John W. Mi/som, Henry Newmon, C. B. A. 
Peck, A. G. Shannon (Australia), and the Proposer. 
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LUCAS RATIO I 

B-185 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

L5n /Ln = LL - <-1)nV " 1 

Solution by C. B. A. Peck, State College, Pennsylvania. 

Substitute in the r . h . s . L = a + b where ab = - 1 , multiply by 
a + b f 0 afterward to get a n + b n . 

Also solved by W. C Barley, Wray G. Brady, Warren Chaves, Herta T. Freitag, Edgar Karst, Charles 
Kenney, John l/l/. Mi I so m, John Wessner, David Zeitlin, and the Proposer. 

LUCAS RATIO I I 

B-186 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 
LK /L = [LQ - ( - l ) n3]2+ (-l)n25F2 . 5n ' n L 2n N ' J N ' n 

(For n even, this result has been given by D. Jarden in the Fibonacci Quar-
terly, Vol. 5 (1967), p. 346.) 

Solution by John Wessner, Montana State University, Bozeman, Montana. 

Using the well-known identity, 

L0 = 5 F2 + 2(- l ) n , 2n n 

and the result of Problem B-185, we find 

L^ /L = L2
0 - (-l)nLQ - 1 5n ' n 2n 2n 

\U-,2 , r / - x n T = [ L 2 n - 2(-l)"] + 5(- l )"L2 n - 10 

= [L 2 Q - 3( - l ) n ] 2 + 5(- l)n[5F^ + 2(- l)n] - 10 

= [ L 2 Q - 3(-l)n]2 + 25( - l )V 
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This is the result given by Jarden in the reference. The M5M in the problem 
statement was a misprint. 

The following solved the corrected problem or pointed out the misprint: W. C. Barley, Wray G. 
Brady, Herta T. Freitag, John Kegel, Henry Newmon, C. B. A. Peck, and the Proposer. 

A DIOPHANT1NE E Q U A T I O N 

B-187 Proposed by Carl Gronemeijer, Saramoc Lake, New York. 

Find positive integers x and y, with x even, such that 

(x2 + y 2 ) (x 2 + x + y 2 ) ( x 2 + f x + y 2 ) = 1 ,608,404. 

Solution by Richard L Breisch, Pennsylvania State University, University Park, Pennsylvania. 

Since 

(x2 + y 2 ) < (x2 + x + y 2 ) < (x2 + - |x + y 2 ) , 

(x2 + y2) < ^1 ,608,404. Hence, it is sufficient to consider x and y such 
that (x2 + y2) < 117; that requires 0 < x < 10 and 0 < y < 10. Since 
1,608,414 factors into 22-7.17-3M09, (x2 + y2) must equal either 

68 = 4 + 64 = 22 . 17 , 

or 

24 = 9 + 25 = 2 • 17, 

or 

109 = 100 + 9 . 

Only this last value works, and thus with x = 10 and y = 3, we get 

109 • 119 • 124 = 1,608,404. 
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Also solved by W. C. Barley, Wray G. Brady, Herta T. Freitag, J. A. H. Hunter (Canada), Charles 
Kenney, John W. Milsom, C B. A. Peck, David Zeitlin, and the Proposer. 

INSCRIBED CIRCUMSCRIBED QUADRILATERAL 

B-188 Proposed by A. G. Shannon, University of Papua and New Guinea, Boroko, Papua. 

Two circles are related so that there is a trapezoid ABCD inscribed 
in one and circumscribed in the other. AB is the diameter of the larger 
circle which has center O, and AB is parallel to CD. 0 is half of angle 
AOD. Prove that sin 0 = (-1 + *IE)/2. 

Solution by Joseph Konhauser, Macalester College, St. Paul, Minnesota. 

In a circumscribed quadrilateral, sums of opposite sides are equal, so 

AB + DC = AD + BC . 

Substituting AB = 2r, 

DC = 2r sin0.fa/2) - 20 , AD = 2r sin 6, 

where r is the radius of the larger circle, we obtain, after simplifying, 

sin 6 = 1 - sm26 . 

It follows that sin 0 = (-1 + <s/5)/2. 

Also solved by Richard L Breisch, Herta T. Freitag, C. B. A. Peck, John Wessner, and the Proposer. 

FIBONACCI EXPONENTS 

B-189 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let a0 = 1* 2Lt = 7, and an + 2 = a n + 1 a n for n > .0. Find the last 

digit (i. e„ , units digit) of am» 
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Solution by David Zeitlin, Minneapolis, Minnesota. 

The units digit has a repetitive cycle of six digits: 1, 7, 7, 9, 3, 7. 
th Since a999 is the 1,000 term, and 1000 = 6(166)+4, the required units 

digit is 9. 

Also solved by W. C. Barley, Wray G. Brady, Richard L Breisch, Warren Chaves, Herta T. Freitag, 
J. A. H. Hunter (CaHada), Henry Newmon, C. B. A. Peck, Richard W. Sielaff, John Wessner, and the 
Proposer. 

[Continued from page 50.] 
show that Theorem 2 yields an equivalent formula. 
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