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SOME FURTHER RESULTS 

There are several other configurations which yield products of binomial 
coefficients which are squares. For instance, if two hexagons Hj and H2 

have a common entry, then the ten terms obtained by omitting the common 
entry have a product which is an integral square. Thus, one can build up a 
long serpentine configuration, or in fact build up snowflake curves. 

Secondly, it should be noted in passing that all results above hold for 
generalized binomial coefficient a r rays , in particular for the FIBONOMIAL 
COEFFICIENTS. 


