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SOME FURTHER RESULTS

There are several other configurations which yield products of binomial
coefficients which are squares. For instance, if two hexagons H; and H,
have a common entry, then the ten terms obtained by omitting the common
entry have a product which is an integral square. Thus, one can build up a
long serpentine configuration, or in fact build up snowflake curves.

Secondly, it should be noted in passing that all results above hold for
generalized binomial coefficient arrays, in particular for the FIBONOMIAL
COEFFICIENTS.



