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1. INTRODUCTION

One of the obvious distinctions between Egyptian mathematics and the
mathematics of other cultures isits additive character of the dependentarith-
metic. A typical example is recognized when we examine the algorithm used
by the Egyptians in doing multiplication in comparison to other algorithms.

Multiplication (Egyptian Style) is done by a doubling-summing process
similar to the one shown in the following example. Let us solve the follow-
ing problem: 19 x 65. The Egyptians noted that the number 19 was equal
to 1+2+ 16 (the sum of powers of two), hence, by the addition of appro-
priate multiples of 65 the Egyptians arrived at the desired result. We may
arrange the problem in the following way:

. 1* *65
doubling < o 150 doubling
doubling < 4 260 doubling
doubling < 8 520 doubling
doubling (1 6 %1040 doubling
19 1235

Upon careful examination of the processes used in this algorithm, we
find that there are two basic conceptsthat contribute to its efficiency. Name-
ly, they are the concepts of distributivity and completeness. The latter con-
ceived by Professor Verner E. Hoggatt, Jr. [1].

We can easily identify the role which is played by the distributive law
in the algorithm, for example, in the preceding problem 65x 19 = 65 (1 +
2 + 16). However, the contribution made by the concept of completeness is
not self-evident. Let us turn to the definition of completeness before we ex-

amine its role in the Egyptian algorithm.
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Definition. A sequence S of positive integers is said to be complete
if and only if every element n, where n is an element of the positive inte-
gers can be represented as a sum of distinct elements of S.

The sequence used in the Egyptian method of multiplication the author
shall describe as T, where Tn = of m >0). Inorder to show that T is
complete, we must first prove the following lemma.

Lemma 1. Ty + Ty + Ty + Tg + +++ + Tn_1 = Tn - L

Proof. We shall prove this lemma by mathematical induction. Here,

we have

P(n):T0+T1+T2+T3+---+Tn_1=Tn-1.

. Then P(1): Ty = Ty-1 is easily seen to be true since 1 = 2 - 1.
Thus, we have accomplished our inductive basis.

Now, suppose that
P(K):T0+T1+T2+T3+---+Tk_1 =T -1
is true (the inductive assumption), and we must then prove:
PK +1): Ty + Ty + Ty + Tg+ +- +T_ =T - 1
By our inductive assumption, we know that
To + Ty + Ty + Ty + -2+ +T 5 = T - 1.

Hence, by substitution into P(k + 1), we have that

Tk—1+Tk = Tk+1'1'
It follows that
2Tk—1 =Tk+1—1,
hence, 2T, = T, .. Since T =2k, we have that 2T, =T, .. Therefore,

k k+1 k k k+1
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we have shown that if P(K) is true, then P®K + 1) is true, and we have
completed the inductive transition.

Employing Lemma 1, we may prove the following theorem.

Theorem 1. The sequence T, where T, = 2" > 0) is a complete
sequence.

Proof. As an inductive basis, we know that
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+ 4, etc.

Hence, we must assume that there are representations for all the positive

integers N:

1< N < o™ _ g

Therefore, we must show that there are representations for all positive inte-

gers M:

2n+1_1<M<2n+2_1.

By subtracting 2n+1 from the above inequality, we have that

1 2n+2 _ n+1 1.

1< M - 2 oL _

Let Q = M - 2n+1; hence, -1 < Q@ < 2n+1 - 1. This leads us to the con-
clusion that @ is representable as a sum of powers of 2 by our inductive
assumption. And, from this, we can conclude that M is representable as a

+
sum of powers of 2 since M = Q + 2 1 and

n+1

2 1 =1+2+22+2 +... 42",

Hence, we have completed our inductive transition.
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2. FIBONACCI-EGYPTIAN METHOD

As we noted in the introduction, the necessary and sufficient conditions
for the Egyptian algorithm to ""work' are completeness and distributivity.

The author, upon reaching this conclusion, went in search of other
sequences that would satisfy the above conditions. The first sequence exam-
ined proved to be fruitful. It was the Fibonacci sequence. It is obvious that
the distributive law is satisfied, since we are working solely with positive
integers; however, it is not so obvious that the Fibonacci sequence is com-
plete. Let us then prove this fact.

As before, we must prove a lemma before proving the main theorem.
It is the following:

Lemma 2.

Fn+2—1=F1+F2+F3+F4+"'+Fn.

Proof. We shall prove the lemma by mathematical induction.
Pm):F o -1=TFy+Fp+Fy+Fy+- +F .

Then P(1) : F3 - 1 = Fy which is true, since 2 -1 = 1. Thus, we have

accomplished our inductive basis. Now we must suppose that
P(K):Fk+2 -1=F;+Fy+Fg+Fy+--- +Fy
is true (the inductive assumption), and we must then prove:
P(I(+1)1Fk+3—- 1= F1+F2 +F3+F4+"' +Fk+1'

By the addition of F to both sides of the equation P(K), we have

k+1
Frap ¥ Flpg -1 = Fo b Fp + Ty eee 1+ Fie g
which lieads us to
Frog =1 = Fr# Fp + Fy beee 4 Fp
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by the recursion relation for Fibonacci numbers, namely

Fn+3 - Fn+2 * Fn+1 :
Using this lemma, we may prove the following theorem.
Theorem 2. The Fibonacci numbers form a complete sequence.
Proof. The inductive proof will be consideredin the following way. We

observe that
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+ Fy
F4 = F3 + Fz
= F4 + Fz = Fg + Fz + Fi’ ete.
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We shall use this as our inductive basis. Next, we must assume that there

are representations for all positive integers N, such that
< < -
1 N Fog -1

is true. We must therefore show that there are representations for all pos-

itive integers M, such that

- < < -
Fn+2 1 M Fn+3 L

By subtracting an FIl +2 from the above inequality, we have that

-1 < M—Fn+2 < Fn+3_Fn+2_1'

Let Q = M-F hence,

n+2’

—1<Q<Fn+1—1.

This leads us to the conclusion that Q is representable as a sum of Fibon-

acci numbers by our inductive assumption. And from this, we may conclude



182 FIBONACCI, LUCAS, AND THE EGYPTIANS [Apr.

that M is representable as a sum of Fibonacci numbers, since
M=Q+ Fn+2
and

Fn+2—1:F1+F2+F3+"'+F

0
Hence, we have completed our inductive argument.
Let us examine the Fibonacci-Egyptian method for multiplication. For

example, consider the problem 19 x 65. We note that
19 = 1 +5 + 13,
all of which are Fibonacci numbers. Together with the Fibonacci recursion

relation, and the following set-up, we may approach the problem in the fol-

lowing way:

1% * 65
* 130 *
* 195 T
Topk %325
o8 520
*o1s *g45
19 1235

One may observe that in the preceding example, the entire Fibonacci
sequence was not used. Upon examination, one will find that the first num-
ber of the sequence has been truncated. This does not, however, effect
either the completeness of the sequence nor the distributivity. The author
shall refer to the Fibonacci sequence with one element omitted as the Deleted

F Sequence. Hence, let us prove the following theorem.

Theorem 3. The deleted F sequence, where fn =F (n>1) with
arbitrary Fn not used, is complete.
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Proof. From the previously proven theorem, it was noted that we may
represent any positive integer n, where 1< n < Fn+1 - 1 by using only
the Fibonacci numbers F; through Foo1 without using F, Hence, we
shall consider F, as the arbitrary Fibonacci number to be omitted. We may
observe that Fn 41 can represent itself. Since this is true, it is noted that
we now have representationsfor 1< n < 2Fn+1 - 1. Since wehave increased
our upper bound from what it was formerly, we may use this particulartech-
nique so that we may have representations for any positive integer without
using Fn' For example, if Fn = 1, which is proposed to be the deleted
number, then the sequence would remain complete.

Therefore, we have another method for multiplication which may be

employed by those who have not mastered the traditional algorithm.

3. LUCAS-EGYPTIAN METHOD

Another sequence which proves fruitful in using our algorithm is the

Lucas sequence. The Lucas sequence is composed of the numbers

1, 3, 4, 7, 11, 18, 29, 47, *-*)

and can be used effectively for the base sequence in an Egyptian multiplica-
tion problem. However, there is one acute difficulty in the consideration of
this sequence for our algorithm; it does not have any representation for the
positive integer 2. Therefore, something must be done to the sequence be-
fore we can apply it to our algorithm, since without a representation for the
number 2 it is not complete.

The author chose to augment the sequence in the following way and de-

fine his Augmented Lucas Sequence as An = Ln-l’ where Ay =2, Ay, =1,

A; = 3, and so on.

The reader will observe that this augmented sequence has a represen-
tation for 2 and also observe the recursion relation for the Lucas Sequence,
namely An+1 . An + An-l' Hence, we may use it for our base sequence in
the Egyptian algorithm. The problem 18 x 54 may be set up in the follow-

ing fashion.
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2 108
T 54 T
T3 162 *
toy 216
Toq 378 *
T 594
* 18 o72 *
18 972

The augmented Lucas sequence is complete and may be proved to be in a
similar fashion to Theorem 2, by use of Lemma 3, which states

Lemma 3.
L0+L1+L2+L3+-'-+Ln=L - 1.

Proof. Using an inductive proof, we have as our basis
P(1)2L0+L1 = L3 -1

which is true, since 2+ 1 = 4 - 1. Our inductive assumption is

P(K):L0+L1+L2+L3+"'+Lk=Lk+2—1.
We must then prove that
PK +1): Ly + Ly + Ly + Lg + *** t Ly, = Lyys - 1

is true. This may be accomplished by adding a Ly to both sides of P(K).

Hence, we have that

Lo + Ly + Ly +oee Ay + Lyyy = Digyp Ly - 1
which leads us to the fact that
L0+L1+L2+L3+L4+"'+L = L - 1.

k+1 k+3
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Hence, our induction transition is complete.
Invoking this lemma, we may prove the following theorem.
Theorem 4. The augmented Lucas sequence is complete.

Proof. As our inductive basis, we have that

1 =1
2 =1L
3 = Ly
4 = 1Ly
5 = Lg + Ly, etc.

As our inductive assumption, we assume that for N, a positive integer,

there are representations for N in terms of Lucas numbers so that

< < -
1 N Lo 1.

Hence, we must prove that for M, a positive integer, M is representable

as a sum of Lucas numbers between the intervals of

L -1 < M<L -1.
n-+

n+2 3

Using the same idea as described in the previously proven theorems, we

shall subtract an Lo from the above inequality. Hence, we have that

- - < - -
1<M Ln+2 Ln+3 Ln+2 1.

Let Q = M - Ln+2. Therefore,
-1<Q < Ljs-Lyyp- L.

This leads us to the conclusion that

- < -
1 <Q L1 1.
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We may conclude that Q is representable as a sum of augmented Lucas num-
bers. And from this, we can conclude that M is representable as a sum of
augmented Lucas numbers, since M = Q + Ln 42"

Other sequences may be investigated and tested for completeness; how-
ever, no others with starting values other than (1,1), (1,2), and (2,1) will
be found which satisfy the generalized Fibonacci recursion relation. In gen-
eral, other sequences that are complete will follow the following generalized

recursion relation

n-1
an 2: Gq j=@,3,4,:),
g=n-j

and where the starting values for the above sequences are taken from either
the augmented Lucas sequence or the deleted F sequence. For example,
let us examine the Tribonacci sequence, where three numbers are added.

The generalized recursion relation would look like the following:
n-1
G, = Y Gy -
q=n-3
Hence, the sequence would be

(1, 2, 3, 6, 11, 20, ***).

In general j determines the number of terms to be added together and also
the number of starting valuesto be taken from either the deleted F sequence
or the augmented Lucas sequence.

The author at this point feels that it would be valuable for the reader to
have a simple method for determining whether a sequence is or is not com-
plete. It was observed and proven by John L. Brown, Jr. [2] that the neces-
sary and sufficient conditions for a sequence to be complete is that the

sequence satisfy the following general summation formula
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where A, = 1. Hence, we now have a convenient way in which to determine
a sequence complete.

The material submitted in this paper is not completely theoretical and
does have very definite practical application. The author used both the de-
leted F sequence and the augmented Lucas sequence in conjunction with the
Egyptian method in a classof ""slowlearners." The results were phenomenal.
Those students who could not multiply by traditional means were then given
a method even they could handle. You see, all one needs to be proficient in
the methods given above is an adequate understanding of simple addition.
The author found that most slow learners could add correctly, however, they
could not multiply. Therefore, this algorithm best fit the needs of those
students.

The concepts mentioned throughout the paper may also be used in ad-
vanced mathematics classes. Hence, as one can see, the utility of these
topics and their applications is boundless.

It is the author's intent that the reader search for other complete se-
quences and establish those concepts revealed in this paper, so that he may
transfer the concepts to others and hence, give many an algorithm for mul-
tiplication which they may not already have.

The author would also like the reader to be aware of the fact that it is
sometimes advantageous to use one complete sequence over another. TFor
example, it is better to use the Lucas sequence when multiplying the numbers
18 x 432, than it is to use the Fibonacci sequence or the powers of two se-
quence, since 18 is an element of the Lucas sequence. Therefore, this was
the primary reason the author went in search of other complete sequences.

The author hopes that the methods for multiplication developed in this
paper will be tried, and hopes that the success of those using them will be as

rich as his own.

[Continued on page 194. ]



